THE SAMPLE SIZE OF LABORATORY ANIMALS FOR EXPERIMENTAL STUDIES

DOI: https://doi.org/10.29296/25419218-2018-02-01
Issue: 
2
Year: 
2018

M.N. Makarova, MD; E.V. Shekunova, PhD; A.V. Rybakova, PhD; Professor V.G. Makarov, MD HOUM OF PHARMACY Research-and-Production Association; 3, Zavodskaya St., Build. 245, Kuzmolovsky Urban-Type Settlement, Vsevolozhsky District, Leningrad Region 188663

Today, the principles of the 3Rs (Replacement, Reduction, and Refinement), the principles of humane experimental technique, are a generally accepted international standard that can largely decline the number of laboratory animals. At the same time, it is very important that the decline of the number of animals does not contradict the interests of a study or reduce the reliability of experimental findings. The paper analyzes main approaches to determining the sample size of experimental animals at different levels of availability of preliminary information on a test drug. It gives examples of using the power and sample size analysis and resource alignment as ways to assess the sufficient sample size of experimental animals. The authors consider main approaches to selecting the number of animals for use in the study of acute toxicity according to some foreign and Russian guidelines. They analyze the sample size calculation method if there is a sufficient number of preliminary experimental data by the example of assessing biochemical parameters in the study of chronic toxicity. The paper systematizes the recommendations of foreign agencies regulating the circulation of medicines by the selection of the number of experimental animals in relation to study duration, animal age at the beginning of the study, and other factors

Keywords: 
laboratory animals
bioethics
sample size
toxicity
statistical methods of analysis

References: 
  1. Directive 2010/63/EU Of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes.
  2. Russell W.M.S., Birch R.L. The principles of humane experimental technique. Methuen, London, 1959.
  3. Charan J., Biswas T. How to calculate sample size for different study designs in medical research? Indian J Psychol Med., 2013; 35(2): 121–6.
  4. Festing M.F., Altman D.G. Guidelines for the design and statistical analysis of experiments using laboratory animals. Institute for Laboratory Animal Research. ILAR J. 2002; 43: 244–58.
  5. Rukovodstvo po doklinicheskim issledovaniyam lekarstvennyh sredstv. Pod red. A.N. Mironova. Tom. 1. M.: NCE`MSP, 2012; 942. [A guide to preclinical drug research (by ed. A.N. Mironov), tom. 1. Moscow: NCJeMSP, 2012; 942 (in Russian)].
  6. Globally Harmonised System of classification and labelling of chemicals (GHS). Fifth revised edition. United Nations. New York and Geneva. 2013; 530.
  7. OECD (2001) Guideline for testing of chemicals. Acute Oral Toxicity – Fixed Dose Procedure № 420.
  8. OECD (2001) Guideline for testing of chemicals. Acute Oral Toxicity – Acute Toxic Class Method № 423.
  9. OECD (2001) Guideline for testing of chemicals. Acute Oral Toxicity – Up-and-Down-Procedure (UPD). № 425.
  10. GOST 32296-2013 «Metody ispytaniy po vozdeystviyu himicheskoy produkcii na organizm cheloveka. Osnovnye trebovaniya k provedeniyu ispytaniy po ocenke ostroy toksichnosti pri vnutrizheludochnom postuplenii metodom fiksirovannoy dozy» [GOST 32296-2013 «Methods of testing the effects of chemical products on the human body. The main requirements for conducting tests to assess acute toxicity with intragastric intake by the fixed dose method» (in Russian)].
  11. GOST 32644-2014 «Metody ispytaniya po vozdeystviyu himicheskoy produkcii na organizm cheloveka. Ostraya peroral`naya toksichnost` – metod opredeleniya klassa ostroy toksichnosti» [GOST 32644-2014 «Methods of testing the effects of chemical products on the human body. Acute oral toxicity is a method for determining the class of acute toxicity» (in Russian)].
  12. OECD (2009) Guideline for testing of chemicals. Chronic Toxicity Studies № 452.
  13. GOST 32519-2013 «Metody ispytaniy po vozdeystviyu himicheskoy produkcii na organizm cheloveka. Izuchenie hronicheskoy toksichnosti pri vnutrizheludochnom postuplenii» [GOST 32519-2013 «Methods of testing the effects of chemical products on the human body. The study of chronic toxicity with intragastric intake» (in Russian)].
  14. Chen Z., Cao Y., Qian J., Ge J. TNF-α/mir-125b involved in cardiac micro-infarction and dysfunction after coronary microembolization in mini-pigs. Journal of the American College of Cardiology, 2015; 35: 152.
  15. Bessiere F., N'djin W.A., Colas E.C., Chavrier F., Greillier P., Chapelon J.Y., Chevalier P., Lafon C. Ultrasound-Guided Transesophageal High-Intensity Focused Ultrasound Cardiac Ablation in a Beating Heart: A Pilot Feasibility Study in Pigs. Ultrasound in Medicine & Biology., 2016; 42: 1848–61.
  16. Regan C. P., Stump G. L., Detwiler T. J., Chen L., Regan H. K., Gilberto D.B., DeGeorge J.J., Sannajust F.J. Characterization of an investigative safety pharmacology model to assess comprehensive cardiac function and structure in chronically instrumented conscious beagle dogs. Journal of Pharmacological and Toxicological Methods, 2016; 81: 107–14.
  17. Kalogianni L., Koutinas C.K., Theodorou K., Xenoulis P. G., Suchodolski J.S., Harrus S., Steiner J.M., Siarkou V.I., Mylonakis M.E. Cardiac troponin I concentrations, electrocardiographic and echocardiographic variables remained unchanged in dogs experimentally infected with Ehrlichia canis. The Veterinary Journal, 2016; 217: 109–11.
  18. Yuan H., Zhao J., Guo J., Wu R.N., He L., Cui Y., Feng M., Zhang T., Hou M., Guo Q., Zhang L., Jia L., Huang C., Ye L., Peng S. Comparison of freely-moving telemetry Chinese Miniature Experiment Pigs (CMEPs) to beagle dogs in cardiovascular safety pharmacology studies. Journal of Pharmacological and Toxicological Methods, 2014; 70: 19–28.
  19. Segal L., Roger V., Williams C., Destexhe E., Garçon N. Effects of Adjuvant Systems on the cardiovascular and respiratory functions in telemetered conscious dogs and anaesthetised rats. Regulatory Toxicology and Pharmacology, 2015; 73: 116–25.
  20. Truchetti G., Troncy E., Robichaud A., Gold L., Schuessler T., Maghezzi S., Bassett L., Authier S., Respiratory mechanics: Comparison of Beagle dogs, Göttingen minipigs and Cynomolgus monkeys. Journal of Pharmacological and Toxicological Methods., 2014; 70: 48–54.
  21. Rivera-Benitez J.F., De la Luz-Armendáriz J., Saavedra-Montañez M., Jasso-Escutia M.Á., Sánchez-Betancourt I., Pérez-Torres A., Reyes-Leyva J., Hernández J., Martínez-Lara A., Ramírez-Mendoza H. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus. Veterinary Microbiology., 2016; 184: 31–9.
  22. Ren A., Lv T., Kang N., Zhao B., Chen Y., Bai D. Rapid orthodontic tooth movement aided by alveolar surgery in beagles. American Journal of Orthodontics and Dentofacial Orthopedics, 2007; 131: 160.
  23. Wei N., Gong P., Liao D., Yang X., Li X., Liu Y., Yuan Q., Tan Z. Auto-transplanted mesenchymal stromal cell fate in periodontal tissue of beagle dogs. Cytotherapy, 2010; 12: 514–521.
  24. Gredes T., Mack H., Spassov A., Kunert-Keil C., Steele M., Proff P., Mack F., Gedrange T. Changes in condylar cartilage after anterior mandibular displacement in juvenile pigs. Archives of Oral Biology, 2012; 57: 594–8.
  25. Peacock Z. S., Tricomi B., Murphy B., Magill J., Kaban L.B., Troulis M. Automated Continuous Distraction Osteogenesis May Allow Faster Distraction Rates: A Preliminary Study. J. Oral Maxillofac. Surg., 2013; 71: 1073–84.
  26. Hakimi M., Jungbluth P., Sager M., Betsch M., Herten M., Becker J., Windolf J., Wild M. Combined use of platelet-rich plasma and autologous bone grafts in the treatment of long bone defects in mini-pigs. Injury., 2010; 41: 717–23.
  27. Pithon M.M., Nojima M.G., Nojima L.I. Primary stability of orthodontic mini-implants inserted into maxilla and mandible of swine. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2012; 113: 748–54.
  28. Xu J., Bourgeois H., Vandermeulen E., Vlaeminck B., Meyer E., Demeyere K., Hesta M. Secreted phospholipase A2 inhibitor modulates fatty acid composition and reduces obesity-induced inflammation in Beagle dogs. The Veterinary Journal, 2015; 204: 214–9.
  29. Elmadhun N.Y., Lassaletta A.D., Chu L.M., Liu Y., Feng J., Sellke F.W. Atorvastatin increases oxidative stress and modulates angiogenesis in Ossabaw swine with the metabolic syndrome. The Journal of Thoracic and Cardiovascular Surgery, 2012; 144: 1486–93.