Use of fluorescence staining technique for identification of microorganisms in pharmaceutical analysis

DOI: https://doi.org/10.29296/25419218-2019-08-01
Issue: 
8
Year: 
2019

O.V. Gunar, N.G. Sakhno, M.V. Roshchina Research Center for Examination of Medical Products, Ministry of Health of the Russian Federation; 8, Petrovsky Boulevard, Build. 2, Moscow 127051, Russian Federation

Standard techniques for the detection and quantification of bacteria and fungi from drugs are not adequate for rapid (less than 24 hours) assessment of injured or uncultivated microorganisms and for their isolation. The paper considers alternative methods for the direct determination of microbial cells in a sample, by using fluorescence staining at the key stage, for example, up-to-date technologies, such as microscopy and flow and solid-phase cytometry, which have not currently found a wide utility in the practice of pharmaceutical analysis due to methodological problems. It describes different fluorochromes widely used for scientific and practical purposes, the specific features and limitations of their application and gives a review of physiological and taxonomic fluorescent dyes. Emphasis is placed on the importance and prospects of fluorescence staining of samples under study in combination with current developing technologies; it is concluded that the application of different fluorophores requires careful selection of conditions and development and validation of procedures for analysis in practice.

Keywords: 
pharmaceutical analysis
identification of microorganisms
fluorescence staining
fluorochrome

References: 
  1. Balalaeva I.V. Protochnaja tsitofluorimetrija. Nizhnij Novgorod: Nizhegorodskij gosuniversitet, 2014; 75. [Balalaeva I.V. Flow cytofluorimetry. Nizhny Novgorod: Nizhny Novgorod State University, 2014; 75 (in Russian)].
  2. Suller M.T.E., Stark J.M., Lloyd D. A flow cytometric study of antibiotic-induced damage and evaluation as a rapid antibiotic susceptibility test for methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 1997; 40 (1): 77–83. https://doi.org/10.1093/jac/40.1.77
  3. Vanhee L., Nelis H., Coenye T. Detection and quantification of viable airborne bacteria and fungi using solid-phase cytometry. Nature Protocols, 2009; 4: 224 – 31. https://doi.org/10.1038/nprot.2008.228
  4. Ramani R., Ramani A., Wong S.J. Rapid flow cytometric susceptibility testing of Candida albicans. Journal of clinical microbiology, 1997; 35 (9): 2320 –4.
  5. Rudensky B., Broidie E., Yinnon A.M. et al. Rapid flow-cytometric susceptibility testing of Candida species. Journal of Antimicrobial Chemotherapy, 2005; 55 (1): 106 –109. https://doi.org/10.1093/jac/dkh492
  6. Chaturvedi V., Ramani R., Pfaller M.A. Collaborative study of the NCCLS and flow cytometry methods for antifungal susceptibility testing.of Candida albicans. Journal of clinical microbiology, 2004; 42 (5): 2249 –51. https://doi.org/10.1128/jcm.42.5.2249-2251.2004
  7. 7. Gauthier C., St-Pierre Y., Villemur R. Rapid antimicrobial susceptibility testing of urinary tract isolates and samples by flow cytometry. Journal of Medical Microbiology, 2002; 51 (3): 192–200. https://doi.org/10.1099/0022-1317-51-3-192
  8. 8. Van Belkum A., Dunne W.M. Next-generation antimicrobial susceptibility testing. Journal of Clinical Microbiology, 2013; 51 (7): 2018–24. https://doi.org/10.1128/JCM.00313-13
  9. 9. Riley B. Rapid Microbiology Methods in the Pharmaceutical Industry. American pharmaceutical review, 2006 [Electronic resource]. Access mode: http://www.americanpharmaceuticalreview.com/Featured-rticles/113094-Rapid-Microbiology-Methods-in-the-Pharmaceutical-Industry
  10. 10. Gunar O.V., Sahno N.G. Kolichestvennoe opredelenie mikroorganizmov-kontaminantov lekarstvennyh sredstv s ispol'zovaniem sistemy «Milliflex® quantum». Farmatsija, 2019; 68 (3): 5–11. [Gunar O.V., Sakhno N.G. Quantitative detection of microbial contaminants of drugs, by using the «Milliflex® quantum system». Farmatsiya, 2019. 68 (3): 5–11. https://doi.org/10.29296/25419218-2019-03-01 (in Russian)].
  11. 11. Gordon O., Goverde M., Staerk A., Roesti D. Validation of Milliflex® Quantum for Bioburden Testing of Pharmaceutical Products. PDA Journal of Pharmaceutical Science and Technology, 2017; 71 (3): 206–24. https://doi.org/10.5731/pdajpst.2016.007450
  12. 12. Sajfitdinova A.F. Dvumernaja fluorestsentnaja mikroskopija dlja analiza biologicheskih obraztsov. SPb.: 2011; 110. [Saifitdinova A.F. Two-dimensional fluorescence microscopy for the analysis of biological samples. SPb.: 2011; 110 (in Russian)].
  13. 13. Jeppe L. Nielsen, Robert J. Seviour, Per H. Nielsen Chapter 7. Microscopy. Experimental methods in wastewater treatment, 1st ed., ed. M C M van Loosdrecht; Per Halkjær Nielsen; Carlos Manuel López Vázquez; Damir Brdjanovic. London : IWA Publishing, 2016; 263–84.
  14. 14. Lavis L.D., Raines R.T. Bright Ideas for Chemical Biology. ACS Chemical Biology 3 – 2008; 3: 142—55. https://doi.org/10.1021/cb700248m
  15. 15. Hong S.D., Dhong H.J., Chung S.K. et al. Hematoxylin and eosin staining for detecting biofilms: practical and cost-effective methods for predicting worse outcomes after endoscopic sinus surgery. Clinical and Experimental Otorhinolaryngology, 2014; 7:1 93–197. https://doi.org/10.3342/ceo.2014.7.3.193
  16. 16. Divjanin N.N. Poluchenie i issledovanie fluoroforov dlja sozdanija «fluorestsentnogo jazyka». M.:, 2017. [Divyanin N.N. Obtaining and researching fluorophores to create a «fluorescent language». Moscow, 2017 (in Russian)].
  17. 17. Netrusov A.I., Bonch-Osmolovskaja E.A., Gorlenko V.M. i dr. (Pod red. A.I. Netrusova). Ekologija mikroorganizmov. M.: Akademija, 2004; 272. [Netrusov A.I., Bonch-Osmolovskaya E.A., Gorlenko V.M. et al. (by ed. A.I.Netrusov). Ecology of microorganisms. Moscow: Academy, 2004; 272 (in Russian)].
  18. 18. Vorob'ev I.A., Rafalovskaja-Orlovskaja E.P., Gladkih A.A. Fluorestsentnye poluprovodnikovye nanokristally v mikroskopii i tsitometrii. Tsitologija, 2011; 53 (5): 392–403. [Vorobiev I.A., Rafalovskaya-Orlovskaya E.P., Gladkikh A.A. Fluorescent semiconductor nanocrystals in microscopy and cytometry. Cytologiya, 2011; 53 (5): 392–403 (in Russian)].
  19. 19. Olejnikov V.A., Suhanova A.V., Nabiev I.R. Fluorestsentnye poluprovodnikovye nanokristally v biologii i meditsine. Rossijskie nanotehnologii, 2007; 2 (1–2): 160–73. [Oleinikov V.A., Sukhanova A.V., Nabiev I.R. Fluorescent semiconductor nanocrystals in biology and medicine. Rossiyskie nanotexnologii, 2007; 2 (1-2): 160–73 (in Russian)].
  20. 20. Lee S.F., Osborne M.A. Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? Physical Chemistry Chemical Physics, 2009; 10 (13): 2174–91. DOI: 10.1002/cphc.200900200
  21. 21. Zalesskij V.N. Molekuljarnaja diagnostika: lazernaja skanirujuschaja i protochnaja tsitometrija v issledovanii apoptoza. Ukrainskij meditsinskij zhurnal «Chasopis», 2010; 4 (78): 27–31. [Zalessky V.N. Molecular diagnostics: laser scanning and flow cytometry in the study of apoptosis. Ukrainian Medical Journal «Chasopis», 2010; 4 (78): 27–31 (in Ukrainian)].
  22. 22. Davey H.M., Kell D.B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiological reviews, 1996; 60 (4): 641–96.
  23. 23. Diaper J.P., Edwards C. The use of fluorogenic esters to direct viable bacteria by flow cytometry. Journal of Applied Bacteriology, 1994; 77: 221–8. https://doi.org/10.1111/j.1365-2672.1994.tb03067
  24. 24. Breeuwer P., Drocourt J.L., Bunschoten N. et al. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Applied and Environmental Microbiology, 1995; 61(4): 1614–9.
  25. 25. Von Nebe-Caron G., Badley R.A. Viability assessment of bacteria in mixed populations using flow cytometry. 1995; 179 (1): 55–66. https://doi.org/10.1111/j.1365-2818.1995.tb03612