Approaches to producing, purifying, and standardizing polyprenols

DOI: https://doi.org/10.29296/25419218-2021-06-03
Issue: 
6
Year: 
2021

A.А. Antipina, V.Yu. Balabaniyan M.V. Lomonosov Moscow State University, 1, Leninskie Gory, Moscow 119991, Russian Federation

Polyprenols are an original class of natural compounds, the unique chemical structure of which determines a diversity of their biological properties and a wide spectrum of pharmacological activities. As oligosaccharide donors in the protein N-glycosylation process, polyprenols are directly involved in the synthesis of cell membrane glycoproteins, which contributes to the acceleration of cell regeneration and renewal. Due to their chemical structure, polyprenols act as fat-soluble antioxidants, by suppressing oxidative stress. In addition, polyprenols stimulate metabolic processes and increase the viability of cells, by enhancing the fluidity and permeability of their biological membranes. At the moment, Russia has registered the only drug based on polyprenols, which is a hepatoprotector. Other types of pharmacological activity of polyprenols have been also studied; the latter were observed to have neuroprotective, anti-inflammatory, antitumor, antibacterial, and other pharmacological activities. The design of new medicines based on polyprenols is of particular scientific and practical interest. The most common sources of polyprenols are the foliage on the coniferous trees (various species of fir, abies, and pine) and the leaves of Ginkgo biloba. Polyprenols are isolated from medicinal plant raw materials through extraction that is based on the solubility difference in two or more organic solvents. Other methods for obtaining polyprenols, such as supercritical carbon dioxide extraction or extraction with deep eutectic solvents, are also known. The main method for the standardization of polyprenols is high-performance liquid chromatography. Polyprenols may be analyzed using electrospray ionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and matrix-activated laser desorption/ionization time-of-flight mass spectrometry.

Keywords: 
polyprenols
extraction
high-performance liquid chromatography
electrospray ionization
atmospheric pressure photoionization
matrix-activated laser desorption/ionization

References: 
  1. Rip J.W., Rupar C.A., Ravi K., Carroll K.K. Distribution, metabolism and function of dolichol and polyprenols. Prog Lipid Res. 1985; 24 (4): 269–309. DOI: 10.1016/0163-7827(85)90008-6
  2. Yang L., Wang C.Z., Ye J.Z., Li H.T. Hepatoprotective effects of polyprenols from Ginkgo biloba L. leaves on CCl4-induced hepatotoxicity in rats. Fitoterapia. 2011; 82 (6): 834–40. DOI: 10.1016/j.fitote.2011.04.009
  3. Cavallini G., Sgarbossa A., Parentini I. et al. A Component of the Cellular Antioxidant Machinery. Lipids. 2016; 51 (4): 477–86. DOI: 10.1007/s11745-016-4137-x
  4. Ciepichal E., Jemiola-Rzeminska M., Hertel J. et al. Configuration of polyisoprenoids affects the permeability and thermotropic properties of phospholipid/polyisoprenoid model membranes. Chem. Phys. Lipids. 2011; 164 (4): 300–6. DOI: 10.1016/j.chemphyslip.2011.03.004
  5. Soultanov V., Fedotova J., Nikitina T. et al. Antidepressant-Like Effect of Ropren® in β-Amyloid-(25-35) Rat Model of Alzheimer's Disease with Altered Levels of Androgens. Mol. Neurobiol. 2017; 54 (4): 2611–21. DOI: 10.1007/s12035-016-9848-8
  6. Fedotova J., Soultanov V., Nikitina T. et al. Cognitive-enhancing activities of the polyprenol preparation Ropren® in gonadectomized β-amyloid (25-35) rat model of Alzheimer's disease. Physiol. Behav., 2016; 157: 55-62. DOI: 10.1016/j.physbeh.2016.01.035
  7. Wang C., He L., Yan M., Zheng G., Liu X. Effects of polyprenols from pine needles of Pinus massoniana on ameliorating cognitive impairment in a d-galactose-induced mouse model. Age (Dordr). 2014; 36 (4): 9676. DOI: 10.1007/s11357-014-9676-6
  8. Shustov E.B., Kashuro V.A., Batotsyrenova E.G. i dr. Poliprenoly kak perspektivnye nejrofarmakologicheskie sredstva. Biomeditsina. 2020; 16 (3): 125–9. DOI: 10.33647/2074-5982-16-3-125-129 [Shustov E.B., Kashuro V.A., Batocyrenova E.G. et al. Polyprenols as promising neuropharmacological agents. Biomeditsina. 2020; 16 (3): 125–9. DOI: 10.33647/2074-5982-16-3-125-129 (in Russian)]
  9. Sanin A.V., Ganshina I.V., Sud'ina G.F. i dr. Fosforilirovannye poliprenoly – novyj klass soedinenij s protivovospalitel'noj i bronholiticheskoj aktivnost'ju. Infektsija i immunitet. 2011; 4: 355–60. DOI: 10.15789/2220-7619-2011-4-355-360 [Sanin A.V., Ganshina I.V., Sud'ina G.F. Phosphorilated polyprenols – a new class of compounds with anti-inflammatory and bronchodilator activity. Infektsiya i immunitet. 2011; 4: 355–60. DOI: 10.15789/2220-7619-2011-4-355-360 (in Russian)]
  10. Sari D., Basyuni M., Hasibuan P. et al. Cytotoxic and Antiproliferative Activity of Polyisoprenoids in Seventeen Mangroves Species Against WiDr Colon Cancer Cells. Asian. Pac. J. Cancer. Prev. 2018; 19 (12): 3393–400. DOI: 10.31557/apjcp.2018.19.12.3393
  11. Tao R., Wang C., Ye J. et al. Antibacterial, cytotoxic and genotoxic activity of nitrogenated and haloid derivatives of C50–C60 and C70–C120 polyprenol homologs. Lipids Health Dis. 2016; 15: 175. DOI: 10.1186/s12944-016-0345-x
  12. Kukina T. The Siberian flora as a source of polyisoprenoids. Materials, Methods & Technologies. 2017; 11: 63–75.
  13. Mezhdunarodnyj patent № WO2005086603A3, MPK S07S 29/86. Extraction method for polyprenols : № PCT/KR2005/000723 : zajavl. 14.03.2005 : opubl. 22.09.2005 / Kwon S.-r. [International patent №WO2005086603A3, IPC S07S 29/86. Extraction method for polyprenols : №PCT/KR2005/000723 : appl. 14.03.2005 : publ. 22.09.2005 / Kwon S.-r.]
  14. 14. Sultanov V.S. Sposob poluchenija poliprenolov iz nejtral'nyh ekstraktivnyh veschestv drevesnoj zeleni hvojnyh porod. Patent Rossijskoj Federatsii № RU 2708234C1. MPK C07C 29/00 (2019.08).: № 2019107858: zajavl. 19.03.2019 : opubl. 05.12.2019 / [Sultanov V.S. Method of obtaining polyprenols from neutral extractives of coniferous greenery. Patent of Russian Federation № RU 2708234C1. IPC MPK C07C 29/00 (2019.08).: № 2019107858: appl. 19.03.2019: publ. 05.12.2019 / (in Russian)]
  15. Jozwiak A., Brzozowski R., Bujnowski Z. et al. Application of supercritical CO 2 for extraction of polyisoprenoid alcohols and their esters from plant tissues. J. Lipid Res. 2013; 54: 2023–8. DOI: 10.1194/jlr.D038794
  16. Zhang C., Li M., Qi Z. et al. The construction of a green and efficient system for the separation of polyprenols from Ginkgo biloba leaves. Process Biochemistry. 2021; 100 (47): 252–9. DOI: 10.1016/j.procbio.2020.10.013
  17. Zhang C., Wang C., Tao R., Ye J. Separation of polyprenols from Ginkgo biloba leaves by a nano silica-based adsorbent containing silver ions. J. of Chromatography A. 2019; 1590: 58–64. DOI: 10.1016/j.chroma.2019.01.047
  18. Carlson T., Skorupinska-Tudek K., Hertel J. et al. Single polyprenol and dolichol isolation by semipreparative high-perfomance liquid chromatography technique. The J. of Lipid Research. 2000; 41: 1177–80. DOI: 10.1016/S0022-2275(20)32025-3
  19. Vanaga I., Gubernator J., Nakurte I. et al. Identification of Abies sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes. Molecules. 2020; 25, 1801. DOI: 10.3390/molecules25081801
  20. Takahashi K. Polymer analysis by supercritical fluid chromatography. J. of Bioscience and Bioengineering. 2013; 116 (2): 133–40. DOI: 10.1016/j.jbiosc.2013.02.001
  21. D’Alexandri F., Tonhosolo R., Kimura E., Katzin A. Mass spectrometry analysis of polyisoprenoids alcohols and carotenoids via ESI(Li(+))-MS/MS. Methods Mol. Biol. 2009; 580: 109–28. DOI: 10.1007/978-1-60761-325-1_6
  22. Kania M., Skorupinska-Tudek K., Swiezewska E, Danikiewicz W. Atmospheric pressure photoionization mass spectrometry as a valuable method for the identification of polyisoprenoid alcohols. Rapid. Commun. Mass Spectrom. 2012; 26: 1705–10. DOI: 10.1002/rcm.6280