Mineral Carriers for Oral Drug Delivery

DOI: https://doi.org/10.29296/25419218-2022-01-02
Issue: 
1
Year: 
2022

A.V. Bondarev(1), E.T. Zhilyakova(2), N.V. Avtina(2) 1-Regional State Budgetary Healthcare Institution «Shebekino Central District Hospital», st. Lenin, 46, Shebekino, 309290, Russian Federation; 2-Belgorod State National Research University, st. Victory, 85, Belgorod, 308015, Russia

Introduction. Currently, the development of drug delivery systems is one of the priorities of pharmaceutical technology. Objective: The purpose of the work is to review the scientific and technical literature concerning the possibility of using mineral carriers for oral delivery of medicinal substances. Material and methods: To achieve this goal, it was necessary to review the use of mineral carriers for oral drug delivery, as well as the systematization and classification of mineral carriers for the oral drug delivery. Electronic resources such as eLibrary, CyberLeninka, PubMed were used as research materials. Research methods are analysis and generalization. The study covered the scientific literature for the period from 2002 to the present. Results. It has been established that mineral carriers can be used for oral delivery of the following drug groups: nonsteroidal anti-inflammatory drugs, antibiotics, hypotensive, antitumor, and antipsychotic drugs. The systematization and classification of mineral carriers for oral delivery of medicinal substances has been carried out. It was established that currently five potential groups of medical clays should be considered as mineral carriers: palygorskite (attapulgite), kaolin, smectite, zeolite, and silicon dioxide. Conclusion. Now, zeolites based on the mineral clinoptilolite are at the stage of study and are promising mineral raw materials for obtaining carriers of medicinal substances. Different types of pores of mineral carriers allow them to adsorb drugs and release them in a more pharmacologically active form. Porous mineral carriers based on montmorillonite clay are used to improve the oral bioavailability of poorly water-soluble medicinal substances by increasing their solubility.

Keywords: 
mineral carrier
medical clay
oral delivery system
pores
sorption

References: 
  1. Dutta R.C. Drug carriers in pharmaceutical design: promises and progress. Curr. Pharm. Des., 2007. 13 (7): 761–9. DOI: 10.2174/138161207780249119.
  2. Verheyen S. Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions. Int. J. Pharm. 2002; 249 (1–2): 45–58. DOI: 10.1016/s0378-5173(02)00532-x.
  3. Baza dannyh meditsinskih i biologicheskih publikatsij [Elektronnyj resurs]. Natsional'nyj tsentr biotehnologicheskoj informatsii SShA. 2021. Rezhim dostupa: https://pubmed.ncbi.nlm.nih.gov. [Database of medical and biological publications [Electronic resource]. US National Center for Biotechnology Information. 2021. Access mode: https://pubmed.ncbi.nlm.nih.gov (in Russian)].
  4. Gosudarstvennyj reestr lekarstvennyh sredstv [Elektronnyj resurs]. M-vo zdravoohranenija RF. M., 2021. Rezhim dostupa: http://grls.rosminzdrav.ru [State register of medicines [Electronic resource]. Ministry of Healthcare of the Russian Federation. M., 2021. Access mode: http://grls.rosminzdrav.ru (in Russian)].
  5. Bondarev A.V., Zhiljakova E.T. Ispol'zovanie sorbtsionnyh protsessov v tehnologii sistem dostavki lekarstvennyh veschestv. Farmatsija i farmakologija. 2019; 7 (1): 4–12. DOI: 10.19163/2307-9266-2019-7-1-4-12. [Bondarev A.V., Zhilyakova E.T. The use of sorption processes in the technology of drug delivery systems. Pharmacy and Pharmacology. 2019; 7 (1): 4–12. DOI: 10.19163 / 2307-9266-2019-7-1-4-12 (in Russian)].
  6. Sysuev B.B., Pletneva I.V. Sovremennoe sostojanie issledovanij razrabotok v oblasti innovatsionnyh lekarstvennyh form i ih modifikatsij. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2014; 4 (52): 7–12. [Sysuev B.B., Pletneva I.V. The current state of research and development in the field of innovative dosage forms and their modifications. Bulletin of the Volgograd State Medical University. 2014; 4 (52): 7-12 (in Russian)].
  7. Bondarev A.V., Zhiljakova E.T., Demina N.B. i dr. Perspektivy ispol'zovanija meditsinskih glin. Razrabotka i registratsija lekarstvennyh sredstv. 2019; 8(4): 27–31. DOI: 10.33380/2305-2066-2019-8-4-27-31. [Bondarev A.V., Zhilyakova E.T., Demina N.B. and other Prospects for the use of medical clays. Development and registration of medicines. 2019; 8 (4): 27–31. DOI: 10.33380 / 2305-2066-2019-8-4-27-31 (in Russian)].
  8. Sher P., Insavle G., Porathnam S. et al. Low Density porous carrier drug adsorption and release study by response surface methodology using different solvents. Int J Pharm. 2007; 331: 72–83. DOI: 10.1016/j.ijpharm.2006.09.013.
  9. Song S.W., Hidajat K., Kawi S. Functionalized SAB-15 material as carrier from controlled drug delivery: Influence of surface properties on matrix drug interactions. Langmuir. 2005; 21: 9568–75. DOI: 10.1021/la051167e.
  10. Andersson J., Rosenhoim J., Areva S. et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater. 2004; 16: 4160–7. DOI: 10.1021/cm0401490.
  11. Charney C., Begu S., Tourne P., Nicole L., Lerner D., Devoisselle J.M. Inclusion of ibuprofen in mesoporous template silica: Drug loading and release property. Eur. J. Pharm. Biopharm. 2003; 57: 533–40. DOI: 10.1016/j.ejpb.2003.12.007.
  12. Diab R., Canilho N., Pavel I. et al. Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science., 2017; 249: 346–62. DOI: 10.1016/j.cis.2017.04.005.
  13. Jayrajsinh S., Shankar G., Agrawal Y.K. et al. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. Journal of Drug Delivery Science and Technology. 2017; 39: 200–9. DOI: 10.1180/0009855013640007.
  14. Ahuja G., Pathak K. Porous Carriers for Controlled/Modulated Drug Delivery. Indian J. Pharm. Sci. 2009; 71 (6): 599–607. DOI: 10.4103/0250-474X.59540.
  15. Gupta B., Poudel B.K., Ruttala H.B. et al. Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomater. 2018; 80: 364–77. DOI: 10.1016/j.actbio.2018.09.006.
  16. Khatoon N., Chu M.Q., Zhou C.H. Nanoclay-based drug delivery systems and their therapeutic potentials. Journal of Materials Chemistry. 2020; 8 (33): 7335–51. DOI: 10.1039/d0tb01031f.
  17. Dushkin A.V., Gajdul' K.V., Gol'dina I.A. i dr. Antimikrobnaja aktivnost' mehanohimicheski sintezirovannyh kompozitov antibiotikov i nanostrukturirovannogo dioksida kremnija. Doklady Akademii nauk. 2012; 443(1): 120–122. [Dushkin A.V., Gaidul K.V., Goldina I.A. and other Antimicrobial activity of mechanochemically synthesized composites of antibiotics and nanostructured silicon dioxide. Reports of the Academy of Sciences. 2012; 443 (1): 120–2 (in Russian)].
  18. Zhang H., Shahbazi M., Da Silva T.H. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials. 2013; 34 (36): 9216–9. DOI: 10.1016/j.biomaterials.2013.08.035.
  19. Lin H.M., Xing R., Wu X. et al. Multifunctional SBA-15 for magnetically oriented and PH targeted delivery of Ibuprofen. Materials Research Innovations. 2013; 17 (6): 360–5. DOI: 10.1179/1433075X11Y.0000000068.
  20. Bondarev A., Zhilyakova E., Bondareva N. et al. Classification and Systematics of Medical Clay. Advances in Biological Sciences Research. 2019; 7: 44–6.