Development of a UV spectrophotometric method for quantitative determination of a clopidogrel metabolite suitable for chemical and toxicological analysis

DOI: https://doi.org/10.29296/25419218-2022-07-03
Issue: 
7
Year: 
2022

L.S. Anosova(1), I.Р. Remezova(2), A.M. Agafonov(1)
1-Donetsk National Medical University named after M. Gorky, 16, Ilyich Ave., Donetsk, 283003, DNR
2-Pyatigorsk Medical and Pharmaceutical Institute - branch of the Volgograd State Medical University of the Ministry of Health of Russia, 11, Kalinin Ave., Pyatigorsk, 357500

Introduction. In Russia, more than 50% of all diseases and a fifth of all cases of disability are due to coronary heart disease and stroke. According to the recommendations of the Russian Society of Cardiology (RKO) and the European Society of Cardiology, antiplatelet therapy with clopidogrel is included in the standards of treatment of patients with COVID-19. Clopidogrel is a prodrug, with the help of esterases, hydrolysis occurs with the formation of the main (inactive) circulating metabolite – a derivative of carboxylic acid, which accounts for 85% of all metabolites of this drug. According to the information given in the scientific literature over the past 10 years, clopidogrel is of interest from the point of view of chemical and toxicological studies, since this drug very often becomes the "drug of choice" for suicide purposes. Objective: to develop and validate a technique for the quantitative determination of the main metabolite of clopidogrel – clopidogrel carboxylic acid using an affordable and widely implemented chemical-toxicological analysis method of UV spectrophotometry. Material and methods. Objects of research – Clopidogrel carboxylic acid (SLA) substance-powder. The light absorption of solutions in the UV spectrum was measured with the SF-46 spectrophotometer (JSC LOMO, Russia), the spectral measurement range was from 200 to 350 nm. A standard solution of clopidogrel carboxylic acid in 0.1 M hydrochloric acid solution (100 mcg/ml) was used. Results. The optimal wavelength for the quantitative determination of the main metabolite of clopidogrel – clopidogrel carboxylic acid is 278 nm. The calibration graph for the UV spectrophotometric method was described by the equation: A=0.004128C – 0.008667; linearity was observed within the concentrations of clopidogrel carboxylic acid 20.0–200 mcg/ml; LOD and LOQ were, respectively, 1.655 mcg and 5.015 mcg in the sample. Conclusion. The developed method of quantitative determination of the main metabolite of clopidogrel – clopidogrel carboxylic acid using UV spectrophotometric method meets the requirements for methods recommended for use in forensic toxicology, which is confirmed by validation characteristics.

Keywords: 
clopidogrel
metabolite
clopidogrel carboxylic acid
UV spectrophotometry

References: 
  1. Nijenh V.J. uis et al. Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020; 382 (18): 1696–707. DOI: 10.1056/NEJMoa1915152.
  2. Żurowska-Wolak M., Owsiak M., Bartuś S., Mikos M. The influence of pre-hospital medication administration in ST-elevation myocardial infarction patients on left ventricular ejection fraction and intra-hospital death. Postepy Kardiol Interwencyjnej. 2021; 17 (1): 39–45. DOI: 10.5114/aic.2021.104766
  3. Pena A., Collet J.P., Hulot J.S. et al. Can we override clopidogrel resistance. Circulation. 2009; 119 (21): 2854–7.
  4. Goluhova E.Z., Grigoryan M.V., Ryabinina M.N. Sovremennye aspekty farmakogenetiki klopidogrela i ego klinicheskoe znachenie. Kreativnaya kardiologiya. 2014; 3: 39–52 (in Russian).
  5. Red'kina E.A., Tkachenko N.O., Gladishev V.V. Marketing of antiplatelet agents in the Ukrainian market. Farmacevtichniy zhurnal. 2016; 3–4: 12–5 (in Ukrain)].
  6. Anosova L.S. Raspredelenie klopidogrela v organah otravlennyh zhivotnyh. Farmaciya. 2021; 70 (6): 31–6. DOI: 10.29296/25419218-2021-06-06(in Russian).
  7. Derzhavna Farmakopeya Ukraїni. Derzhavne pіdpriєmstvo «Naukovo- ekspertnij farmakopejnij centr». Dopovnennya 2. Harkіv: RІREG, 2008; 608.
  8. Kocabay G., Okçular I., Akkaya V., Güler K. Suicide attempt with clopidogrel. Hum. Exp. Toxicol. 2006; 25 (12): 731–4.
  9. Borderías C.L., Garrapiz L.J., Caballero G. Pulmonary haemorrhage and haemothorax after massive ingestion of clopidogrel as a suicide attempt. Arch. Bronconeumol. 2009; 45 (11): 570–1. DOI: 10.1016/j.arbres.2009.06.009.
  10. Al Asmar R., Zeid F. Acute Hemothorax Causing Hemorrhagic Shock Following Small-bore Thoracocentesis in a Patient on Clopidogrel: A Case Report and Literature Review. Cureus. 2020; 12 (3): e7431. DOI: 10.7759/cureus.7431.
  11. Attimarad M. Simultaneous Determination of Ofloxacin and Flavoxate Hydrochloride by Absorption Ratio and Second Derivative UV Spectrophotometry. J. Basic Clin. Pharm. 2010; 2 (1): 53–61.
  12. Stolarczyk M., Apola А., Maślanka А. et al. Spectrophotometric method for simultaneous determination of valsartan and substances from the group of statins in binary mixtures. Acta Pharm. 2017; 67 (4): 463–78. DOI: 10.1515/acph–2017–0031
  13. Stolarczyk M., Maślanka А., Apola А. et al. Derivative spectrophotometric method for simultaneous determination of zofenopril and fluvastatin in mixtures and pharmaceutical dosageforms. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015; 148: 66–71. DOI: 10.1016/j.saa.2015.03.100
  14. Parojcić J., Karljiković–Rajić K., Durić Z. et al. Development of the second–order derivative UV spectrophotometric method for direct determination of paracetamol in urine intended for biopharmaceutical characterisation of drug products. Biopharm. Drug Dispos. 2003; 24 (7): 309–14. DOI: 10.1002/bdd.367.
  15. Durán Merás I., Espinosa Mansilla A., Salinas López F., Rodríguez Gómez M. Comparison of UV derivative–spectrophotometry and partial least–squares (PLS–1) calibration for determination of methotrexate and leucovorin in biological fluids. Anal. and Bioanal. Chem. 2002; 373 (4–5): 251–8. DOI: 10.1007/s00216–002–1348–1.
  16. Vergejchik T.H., Linnikova V.A., Gus'kova G.B. Himiko–toksikologicheskij analiz biologicheskih ob"ektov na metoprolol i kvetiapin. Izv. Samarskogo nauch. centra Ros. akademii nauk. 2012; 14 (5 (3)): 700–3 (in Russian)
  17. Tolba M.M., Salim M.M. Derivative Quotient Spectrophotometry and an Eco–Friendly Micellar Chromatographic Approach with Time–Programmed UV–Detection for the Separation of Two Fluoroquinolones and Phenazopyridine. J. Chromatogr. Sci. 2016; 54 (5): 776–89. DOI: 10.1093/chromsci/bmw010.
  18. Baram G.I., Rejhart D.V., Gol'dberg E.D. Novye vozmozhnosti vysokoeffektivnoj zhidkostnoj hromatografii v farmakopejnom analize. Byulleten' eksperimental'noj biologii i mediciny. 2003; 135 (1): 75–9 (in Russian)
  19. Bondar V.S., Anosova L.S. Visokoefektivna rіdinna hromatografіya v analіzі klopіdogrelyu. Farmacevt. chasop. 2012; 4 (24): 73–8 (in Ukrain)].
  20. Pawaskar P.S. et al. Development of Reverse Phase Liquid Chromatographic Method for Deter- mination of (+)-(S)-(o-Chlorophenyl)-6,7- Dihydrothieno [3,2-c] pyridine-5(4H)-acetic acid,Hydrochloride and Methyl (+/-) – (o- Chloro phenyl)-4,5-Dihydrothieno[2,3-c] pyridine-6(7H)-acetate, Hydrochloride from Clopidogrel Besylate. Int. J. Pharm. Res. Sch. 2013; 2 (1): 16–23.
  21. Pawaskar P. et al. Development of Normal Phase Liquid Chromatographic Method for determination of Methyl (-) – (R) – (o- chlorophenyl) -6, 7- dihyrothieno [3, 2-C] pyridine -5(4H) acetate, hydrogen sulphate from ClopidogrelBesylate. Int. J. Pharm Sci. 2013; 5 (1): 1971–6.
  22. Anosova L.S. Himiko-toksikologicheskoe issledovanie klopidogrelya. COLLECTIVE MONOGRAPH «The modern stage of the development of medical education in Ukraine and EU countries». Medical University of Lublin. Poland. 2021; 1–25. DOI: 10.30525/978-9934-26-090-2-1 (in Russian)
  23. Bondar V.S., Anosova L.S., Shovkova Z.V. Іdentifіkacіya klopіdogrelyu ta jogo metabolіtu za dopomogoyu metodu tonkosharovoї hromatografії. Ukr. med. al'm. 2013; 16 (1): 50–2 (in Ukrain)].
  24. Bondar V.S., Anosova L.S. Ekstrakcіjno-fotometrichne viznachennya klopіdogrelyu. Ukr. med. al'm. 2012; 15 (5) (dodatok): 43–4 (in Ukrain)].
  25. Bondar'V.S., Anosova L.S., Shovkovaya Z.V. Izolirovanie klopidogrelya i ego metabolita iz biomateriala. Farmaciya Kazahstana. 2013; 7: 34–7 (in Russian).
  26. Bondar'V.S., Anosova L.S., Shovkovaya Z.V.Izolirovanie klopidogrelya i ego metabolita iz biologicheskih zhidkostej. Farmaciya Kazahstana. 2013; 9: 59–60 (in Russian).
  27. SOFT/AAFS Forensic Laboratory Guidelines. 2006; 24. [Электронный ресурс]. Available at: http://www.soft–tox.org/files/ Guidelines_2006_Final.pdf (accessed 12.06.2022)