Evaluation of the quality and biological activity of BioDihydroquercetin

DOI: https://doi.org/10.29296/25419218-2022-08-01
Issue: 
8
Year: 
2022

1-LLC“Sibpribor” the Russian Federation, St. Trilissera, 87, Irkutsk, 664047, Russian Federation;
2-Buryat scientific center, Siberian branch of the Russian Academy of Sciences, street Casanovas, 8, Ulan-Ude, 670047,
Russian Federation;
3-Krasnoyarsk state medical University named after Professor V.F. Voyno-Yasenetsky, Partizan Zheleznyak str., 1, Krasnoyarsk, 660022 Russian Federation

Introduction. BioDihydroquercetin is a natural dietary supplement made from larch wood, produced by “SibPribor” LLC using a proprietary technology under the trade mark “Baikal Legend”. BioDihydroquercetin powder is obtained with a low density and high rates of biological activity and bioavailability, accessibility. Sublingual administration ensures rapid and complete penetration of the biologically active substance into the blood. Objectives: a comprehensive study of the composition and the biological activity of BioDihydroquercetin in connection with the peculiarities of its production technology. Material and methods. The content of dihydroquercetin (%) was determined according to GOST 33504-2015 and pharmacopoeial monograph of the company "Taxifolia", the qualitative composition was studied using high-performance liquid chromatography. The antiradical activity of the powder to organic and inorganic radicals of natural and artificial origin was studied by spectrometry and coulometry to determine the biological activity of BioDihydroquercetin. Antioxidant potential was assessed using spectrophotometry and fluorimetry with the determination of the total antioxidant potential and the ability to absorb oxygen radicals. The iron-reducing and iron-chelating potential of BioDihydroquercetin was determined by spectrophotometry. The study of bioavailability was carried out using GIT model. In addition, the protection of the organic substrate from oxidative stress caused by lipid peroxides, as well as the anti-inflammatory and membrane-stabilizing potential, were studied by spectrophotometry. Results and discussion. The content of dihydroquercetin in the samples was 99.2–104%. The content of dihydroquercetin according to the HPLC method is 96.84±2.03. The product of high purity, 100% consists of an active substance, an accompanying satellite of dihydroquercetin is a natural accompanying satellite of dihydroquercetin – dihydrokaempferol, the content of which does not exceed 1%. Biodihydroquercetin was shown to have antioxidant, antiradical and iron-reducing activity. The conducted studies have shown that Biodihydroquercetin is effective for protecting the biological substrate. In addition, BioDihydroquercetin has shown to be a good inactivator of nitric oxide molecules and has a pronounced inhibitory effect on the albumin coagulation process, which indicates its high anti-inflammatory activity. BioDihydroquercetin also has a pronounced membrane stabilizing potential. The special form of the powder, produced according to the author's technology, ensures high bioavailability. Conclusion. BioDihydroquercetin is a highly active natural product, characterized as an effective antioxidant, created using an author's technology. Its high biological activity and purity indicate its effectiveness and safety, which allows it to be recommended to a wide range of the population as an antioxidant, anti-inflammatory, membrane-stabilizing and membrane-protective agent of a high degree of protection. Biodihydroquercetin can be recommended to healthy people, living in big cities as a means of preventing “diseases of civilization”, also to all people for active longevity. Besides, Biodihydroquercetin can be used as an adjuvant in complex therapy of cardio-vascular, oncological, neurological diseases as well as diabetes mellitus type 2.

Keywords: 
BioDihydroquercetin
dihydroquercetin
author's production technology
biologically active additive
natural antioxidant
anti-inflammatory effect
membrane protector
membrane stabilizer.

References: 
  1. Северьянова А.В., Мачнева И.В., Газизова А.И. Дигидрокверцетин: история создания и перспективы применения. Материалы X Международной студенческой научной конференции «Студенческий научный форум» URL: https://scienceforum.ru/2018/article/2018000636 (дата обращения: 30.10.2022). [Severyanova A.V., Machneva I.V., Gazizova A.I. Dihydroquercetin: history of creation and prospects of application. Materials of the X International Student Scientific Conference "Student Scientific Forum" URL: https://scienceforum.ru/2018/article/2018000636 (accessed: 10/30/2022). (in Russian)].
  2. Максикова Т.М., Калягин А.Н., Усольцева О.Н., Бабанская Е.Б. Возможности использования БиоДигидрокверцетина для профилактики кардиоваскулярных заболеваний у лиц пожилого возраста, занимающихся в группах здоровья, Сибирский медицинский журнал (Иркутск). 2016; 141 (2): 34–9. [Maksikova T.M., Kalyagin A.N., Usoltseva O.N., Babanskaya E.B. The possibilities of using Bio-Dihydroquercetin for the prevention of cardiovascular diseases in elderly people engaged in health groups, Siberian Medical Journal (Irkutsk). 2016; 141 (2): 34–9 (in Russian)].
  3. Ганов Д.И. Использование качественных природных БАДов в качестве сопроводительной терапии при радикальном лучевом лечении и химиотерапии онкоурологических пациентов. Врач. 2021; 32 (11): 76–9. [Ganov D.I. The use of high-quality natural dietary supplements as an accompanying therapy for radical radiation treatment and chemotherapy of oncourological patients. Doctor. 2021; 32 (11): 76–9. DOI: https://doi.org/10.29296/25877305-2021-11-16 (in Russian)].
  4. Синкина Т.В. Биодигидрокверцетин (БДК) и Биочага (БЧ) как сопроводительная терапия при химиотерапевтическом и послеоперационном курсе дистанционной лучевой терапии рака молочной железы. Медицина: целевые проекты. 2020; 36: 28–30. [Sinkina T.V. Bio dihydroquercetin (BDK) and Biochaga (BCH) as an accompanying therapy in the chemotherapeutic and postoperative course of remote radiation therapy for breast cancer. Medicine: target projects. 2020; 36: 28–30 (in Russian)].
  5. Васенина Е.Е., Левин О.С. Окислительный стресс в патогенезе нейродегенативных заболеваний: возможности терапии. Современная терапия в психиатрии и неврологии. 2013; 3–4: 39–46. [Vasenina E.E., Levin O.S. Oxidative stress in the pathogenesis of neurodegenerative diseases: therapeutic possibilities. Modern therapy in psychiatry and neurology. 2013; 3–4: 39–46 (in Russian)].
  6. Усольцева О.Н. Профилактика ускоренного старения и "болезней цивилизации" с помощью природных геропротекторов Биочага и БиоДигидрокверцетин. Медицинская сестра. 2022; 3: 35–9. [Usoltseva O.N. Prevention of accelerated aging and "diseases of civilization" with the help of natural geroprotectors Biochaga and BioDihydroquercetin. A nurse. 2022; 3: 35–9. DOI:10.29296/25879979-2022-03-07 (in Russian)].
  7. Kim A., Nam Y.J., Lee C.S. Taxifolin reduces the cholesterol oxidation product-induced neuronal apoptosis by suppressing the Akt and NF-kB activation-mediated cell death. Brain Res Bull. 2017; 134: 63–71. DOI: 10.1016/j.brainresbull.2017.07.008.
  8. Joo S.-J., Park H.-J., Park J.-H., Cho J.-G., Kang J.-H., Jeong T.-S., Kang H.C., Lee D.-Y., Kim H.-S., Byun S.-Y., Baek N.-I. Flavonoids from Machilus japonica stems and their inhibitory effects on LDL oxidation. Int J. Mol. Sci. 2014; 15 (9): 16418-29. DOI: 10.3390/ijms150916418.
  9. Theriault A., Wang Q., Van Iderstine S.C., Chen B., Franke A.A., Adeli K. Modulation of hepatic lipoprotein synthesis and secretion by taxifolin, a plant flavonoid. J. Lipid Res. 2000; 41: 1969–79.
  10. Haque Md.W., Bose P., Siddique M.U.M., Sunita P., Lapenna A., Pattanayak S.P. Taxifolin binds with LXR (a & P) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed Pharmacother. 2018; 105: 27–36. DOI: 10.1016/j.biopha.2018.05.114.
  11. Судаков Н.П., Попкова Т.П., Лозовская Е.А., Никифоров С.Б., Клименков И.В., Ежикеева С.Д., Тен М.Н., Левчук А.А., Бабкин В.А. Влияние Дигидрокверцетина на гиперхолестеринемию. Химия растительного сырья. 2020; 4: 281–8. DOI: 10.14258/jcprm.2020047767 [Sudakov N.P., Popkova T.P., Lozovskaya E.A., Nikiforov S.B., Klimenkov I.V., Enikeeva S.D., Ten M.N., Levchuk A.A., Babkin V.A. The effect of Dihydroquercetin on hypercholesterolemia. Chemistry of plant raw materials. 2020; 4: 281–8. DOI: 10.14258/jcprm.2020047767 (in Russian)].
  12. Дигидрокверцетин. Регистр лекарственных средств России. [Dihydroquercetin. Register of Medicines of Russia URL: https://www.rlsnet.ru/active-substance/digidrokvercetin-1990 [Dihydroquercetin. Register of Medicines of Russia. URL: https://www.rlsnet.ru/active-substance/digidrokvercetin-1990 (in Russian)].
  13. Шелковская О.В., Иванов В.Е., Карп О.Э., Шелковская О.В. Дигидрокверцетин уменьшает концентрацию перекиси водорода и гидроксильных радикалов, индуцированных рентгеновским излучением. Современные проблемы науки и образования. 2015; 3: URL: https://science-education.ru/ru/article/view?id=18969 (дата обращения: 30.10.2022). [Shalkovskaya O.V., Ivanov V.E., Karp O.E., Shchelkovskaya O.V. Dihydroquercetin reduces the concentration of hydrogen peroxide and hydroxyl radicals induced by X-ray radiation. Modern problems of science and education. 2015; 3: URL: https://science-education.ru/ru/article/view?id=18969 (accessed: 10/30/2022) (in Russian)].
  14. Целуйко С.С., Красавина Н.П., Корнеева Л.С. Дигидрокверцетин и его эффективность при длительной экспериментальной гипергликемии. Здоровье. Медицинская экология. Наука. 2011; 1: 92–5. [Tseluiko S.S., Krasavina N.P., Korneeva L.S. Dihydroquercetin and its effectiveness in long-term experimental hyperglycemia. Health. Medical ecology. The science. 2011; 1: 92–5 (in Russian)].
  15. Zivkoviс L., Bajiс V., Topaloviс D. Bruić M, Spremo-Potparević B. Antigenotoxic Effects of Biochaga and Dihydroquercetin (Taxifolin) on H2O2-Induced DNA Damage in Human Whole Blood Cells. Oxid Med Cell Longev. 2019: 5039372. DOI: 10.1155/2019/5039372.
  16. Olennikov D.N., Agafonova S.V., Stolbikova A.V., Rokhin A.V. Мelanin of laetiporus sulphureus (BULL.: FR.) Murr sterile form. Appl. Biochem Microbiol. 2011; 47 (3): 298–303. DOI:10.1134/S0003683811030094
  17. Межгосударственный стандарт. Добавки пищевые. Дигидрокверцетин. Технические условия. [Interstate standard. Food additives. Dihydroquercetin. Technical conditions. URL:https://docs.cntd.ru/document/1200126898 (in Russian)].
  18. Prieto P., Pineda M., Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999; 269 (2): 337–41. DOI: 10.1006/abio.1999.4019.
  19. Seyoum A., Asres, K., El-Fiky F.K. Structure-Radical Scavenging Activity Relationships of Flavonoids. Phytochemistry. 2006; 67: 2058–70. http://dx.doi.org/10.1016/j.phytochem.2006.07.002
  20. Yen G.-C., Su H.-J., Yeh C.-T., Wu C.-H., Duh P.-D. Scavenging effects of lotus seed extracts on reactive nitrogen species. 2006; 94 (4): 596–602. DOI: 10.1016/j.foodchem.2004.11.052
  21. Potapovich M.V., Metelitza D.I., Shadyro O.I., Kurchenko V.P. Аntioxidant activity of oxygen-containing aromatic compounds. Appl. Biochem. Microbiol. 2011; 47 (4): 346–55. DOI: 10.1134/S0003683811040144
  22. Zhou B., Guo Z., Xing J., Huang B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. Journal of Experimental Botany. 2005; 56: 3223–8.
  23. Глазырина Ю.А., Сараева С.Ю., Козицина А.Н., Герасимова Е.Л., Матерн А.И. Оптические методы в фармацевтическом анализе: лаборатор. практикум: учеб.-метод. пособие. Под общ. ред. С.Ю. Сараевой. М-во образования и науки Рос. Федерации, Урал. федер. ун-т. Екатеринбург: Урал. ун-та, 2015. [Glazyrina Yu.A., Saraeva S.Yu., Kozitsina A.N., Gerasimova E.L., Matern A.I. Optical methods in pharmaceutical analysis: laboratory. workshop: study.-method. Manual. Under the general editorship of S.Yu. Saraeva. Ministry of Education and Science of the Russian Federation. Federation, Ural. feder. un-T. Yekaterinburg: Ural. un-ta, 2015 (in Russian)].
  24. Olennikov D.N. In vitro bioaccessibility, human gut microbiota metabolites and hepatoprotective potential of chebulic ellagitannins. Nutrients. 2015; 7 (10): 8735–49.
  25. Государственная Фармакопея Российской Федерации. XIII издание. Москва, 2018. [The State Pharmacopoeia of the Russian Federation. XIII edition Moscow, 2018 (in Russian)].