© Коллектив авторов, 2016 УДК 615.217.24:615.453.6].015.154.012

ТАБЛЕТКИ ПРОРОКСАНА ПРОЛОНГИРОВАННОГО ДЕЙСТВИЯ: РАЗРАБОТКА СОСТАВА И ИЗУЧЕНИЕ ВЫСВОБОЖДЕНИЯ

Г.О. Нифонтова^{1, 2*}, С.П. Кречетов¹, кандидат медицинских наук, О.В. Долотова¹, кандидат химических наук, Е.В. Коростылев³, А.Р. Ахметзянова⁴, И.И. Краснюк², доктор фармацевтических наук, профессор ¹Центр живых систем Московского физико-технического института;

Российская Федерация, Московская область, 141700, Долгопрудный, Институтский пер., д. 9, стр. 7

²Первый Московский государственный медицинский университет им. И.М. Сеченова;

Российская Федерация, 119991, Москва, Трубецкая ул., д. 8, стр. 2

³Центр Коллективного пользования Московского физико-технического института;

Российская Федерация, Московская область, 141700, Долгопрудный, Институтский пер., д. 9

⁴Научно-производственный центр «Фармзащита» Федерального медико-биологического агентства

России; Российская Федерация, Московская область, 141402, Химки, Вашутинское шоссе, д. 11

Введение. Небольшая длительность эффекта и высокая кратность приема пероральных лекарственных препаратов (ΛΠ) неселективного α-адреноблокатора пророксана указывают на целесообразность разработки его ΛΠ в виде таблеток с пролонгированным высвобождением, удерживающихся в желудке.

Цель исследования – обоснование состава и технологии получения таблеток с пролонгированным высвобождением пророксана на основе гидрофильных матриц.

Материал и методы. Изучение растворимости пророксана проводили по методу «shake-flask» с определением его количества в образцах с помощью высокоэффективной жидкостной хроматографии (BЭЖX). Размер и морфологию частиц порошка пророксана изучали с помощью оптической и электронной микроскопии. Таблетки на основе гидрофильного матрицеобразователя гидроксипропилметилцеллюлозы (ГПМЦ) получали прямым прессованием. Высвобождение пророксана из таблеток оценивали по результатам испытания «Растворение».

Результаты. Использование гидрофильного матрицеобразователя ГПМЦ позволяет обеспечить необходимые параметры пролонгированного высвобождения пророксана из таблеток. Особенности субстанции пророксана не позволяют получать таблетируемые смеси с оптимальной сыпучестью и требуют предварительной грануляции субстанции.

Заключение. Пролонгацию высвобождения, ориентированную на максимальное высвобождение пророксана гидрохлорида в желудке, обеспечивает матрицеобразователь ГПМЦ и наполнитель микрокристаллической целлюлозы. Выбираемый способ грануляции должен учитывать особенности и субстанции, и вспомогательных веществ.

Ключевые слова: пророксан, растворимость, рН, пролонгированное высвобождение, гидрофильные матрицы.

*E-mail: galya.nif@yandex.ru

ВВЕДЕНИЕ

Неселективный α-адреноблокатор пророксан применяется при лечении и профилактике симпато-адреналовых диэнцефальных и гипертонических кризов, гиперсимпатикотонии, психическом перенапряжении, нейрогенном зуде, опийной или алкогольной абстиненции [1—3]. Из-за непродолжительности фармакологического эффекта [4] приходится применять довольно высокую кратность приема пероральных лекарственных препаратов (ЛП) пророксана. В связи с этим целесообразна разработка для данной фармацевтической субстан-

ции (Φ C) перорального препарата с пролонгированным высвобождением. Учитывая характерное для органических оснований снижение растворимости при нейтральных и щелочных рH, для обеспечения максимальной биодоступности пророксана предпочтительно, чтобы его высвобождение происходило в желудке.

Твердые лекарственные формы (ЛФ) в качестве вспомогательных веществ гелеобразующих гидрофильных матрицеобразователей (производных целлюлозы, природных полисахаридов и др.) позволяют не только пролонгировать высвобождение ФС [5], но и создают условия для получения удерживающихся в желудке (гастроретентивных) таблеток [6].

Цель исследования — обоснование состава и технологии получения таблеток с пролонгированным высвобождением пророксана на основе гидрофильных матриц.

МАТЕРИАЛ И МЕТОДЫ

ФС пророксана гидрохлорида получена от «КемикалЛайн», Россия. Растворимость пророксана изучали методом «shake-flask» в 50 мМ буферных растворах: солянокислом (рН 1,2; 2,0); цитратном (рН 3,0; 4,0; 5,0); фосфатном (рН 6,0; 6,8; 8,0). К навескам ФС добавляли необходимое количество буферного раствора из расчета 1 г; 0,1 г; 0,033 г; 0,01 г и 0,001 г пророксана на 1 мл растворителя, инкубировали при температуре 37°C и постоянном перемешивании в течение 24 ч в шейкере-инкубаторе IKA KS 3000 с частотой 180 об/мин. Затем пробы центрифугировали (5 мин при 200 g, центрифуга LMC-300), отбирали супернатант для количественного определения исследуемой ФС с помощью ВЭЖХ на хроматографе Shimadzu LC30 с диодно-матричным детектором SPD-M20A, колонкой X-Bridge C 18 (150×4,6 мм; 3,5 мкм). Применялся градиентный режим элюирования подвижной фазой, получаемой смешиванием 0,005 М раствора 1-гептилсульфоната натрия, подкисленного ортофосфорной кислотой до рН 3,0 (компонент А), и ацетонитрила (компонент Б). Состав подвижной фазы: 0-2 мин -5% Б; 2-7,5 мин - линейно до 40%Б; 7,5–9 мин – линейно до 95% Б; 9,0–14 мин – 95% Б. Анализ проводили при температуре колонки 27°C со скоростью 1.5 мл/мин, объемом пробы -20 мкл, детектировании на длине волны 190 нм.

Таблетки получали с помощью прямого прессования. Для этого все ингредиенты (табл. 1) перемешивали в смесителе РМ 10 в течение 10 мин. Затем смесь опудривали стеаратом магния в том же смесителе, после чего подвергали прессованию на табле-

точном прессе EP-1 ERWEKA, снабженном двояковыпуклым пуансоном диаметром 8 мм радиусом кривизны 7 мм.

Высвобождение пророксана из таблеток оценивали по результатам испытания «Растворение», проведенного с помощью *on-line* системы растворения, состоящей из тестера растворения DT 820 ERWEKA с аппаратом типа «вращающаяся корзинка» и спектрофотометра UV-1800, соединенных проточной системой и работающих под управлением программного обеспечения Disso.Net 2.9.0.0. Параметры проведения теста: объем среды растворения — 750 мл, температура — $37\pm0.5^{\circ}$ C, скорость вращения корзинки — 100 об/мин, длина волны — 325 нм; среда растворения — 50 мМ солянокислый буфер рН 1,2, моделирующий среду желудка.

Электронные микрофотографии частиц порошка ФС пророксана получали с помощью сканирующего электронного микроскопа JSM-7001F JEOL. Для оценки фракционного состава разбавленную суспензию порошка ФС в нерастворяющей пророксан кремнийорганической жидкости (Q7-9120 350 cSt, DowCorning) анализировали с помощью оптического микроскопа Axio Observer.Z1 Carl Zeiss, оснащенного объективом A-Plan 10×/0.25 Ph 1 и управляемого программным обеспечением ZEN-ZEISS.

Статистическую обработку данных проводили в программе MS Office Excel 2007. Средние значения и стандартные отклонения по 3 измерениям (если не оговорено другое количество измерений) представлены на рис. 1, 2. Достоверность отличий оценивали по t-критерию Стьюдента.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изучение растворимости пророксана в буферных средах с различными значениями рН показывает, что данная ФС обладает умеренной растворимо-

Таблица 1

СОСТАВ ТАБЛЕТОК ПРОРОКСАНА

W	Содержание ингредиента в таблетке, мг						
Ингредиент	МП1	МП2	МП3	МП4	МП5	МП6	
Пророксан	60,0	60,0	60,0	60,0	60,0	60,0	
Гидроксипропилметилцеллюлоза	120,0	40,0	60,0	60,0	60,0	60,0	
Микрокристаллическая целлюлоза	-	-	30,0	-	-	30,0	
Натриевая соль карбоксиметилцеллюлозы	_	40,0	-	-	_	-	
Маннитол	-	-	-	40,0	-	-	
Сахароза	_	-	_	-	40,0	_	
Натрия гидрокарбонат	-	-	-	-	-	7,5	
Лимонная кислота	_	-	_	-	_	5,5	
Магния стеарат	1,8	1,4	1,5	1,6	1,4	1,6	
Масса таблетки, мг	181,8	141,4	151,5	161,6	141,4	164,6	

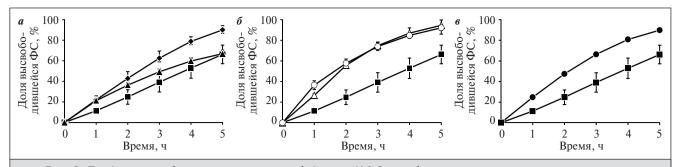


Рис. 1. Профили высвобождения пророксана в буфере с рН 1,2 из таблеток, содержащих разные наполнители. а – составы, содержащие набухающие наполнители: ◆ – МП 3 (МКЦ), ▲ – МП 2 (КМЦ); б – составы, содержащие водорастворимые наполнители: ○ – МП 4(маннитол), △ – МП 5 (сахароза); в – составы, содержащие газообразующие агенты: ● – МП 6;* – отличия от состава без наполнителя МП 1 (■) значимы (р<0,05)

стью (табл. 2). При этом пророксан в насыщенных концентрациях снижает pH буферных растворов, что особенно выражено при pH>3. Кроме того, полученные данные демонстрируют заметное влияние используемой буферной системы на растворимость пророксана, проявляющееся в скачкообразных из-

менениях насыщенных концентраций ФС при переходе от одного буфера к другому. Это возможно указывает на разный характер взаимодействия протонированной молекулы пророксана с анионами кислот. В частности, наблюдаемое снижение растворимости при смене буферного раствора от цитратно-

го (рН 3,0, 4,0, 5,0) к солянокислому (рН 1,2, 2,0) отражает меньшее произведение растворимости соли протонированного пророксана с противоионом Cl- по сравнению с цитрат-ионом.

Определение содержания 3 ФП в пробах с насыщенными концентрациями пророксана при разных рН выявило нестабильность ФС при рН>3, которая выражается в увеличении концентрации 3 ФП в соответствующих пробах более чем на порядок (см. табл. 2). Послед-

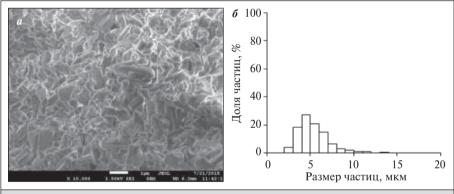


Рис. 2. Электронные микрофотографии (а) и фракционный состав (б) порошка ФС пророксана (n=410)

Таблица 2 РАСТВОРИМОСТЬ ПРОРОКСАНА ГИДРОХЛОРИДА И ОБРАЗОВАНИЕ 3-ФП

Исходное значение рН	рН раствора	Растворимость ФС	Концентрация, М		
буфера	после инкубации с ФС	по ГФ XII, ч.1	пророксана гидрохлорид	3 ФП	
1,2	0,9	Умеренно растворима	$0,041\pm0,002$	$0,0011\pm0,0003$	
2,0	1,9	То же	$0,054\pm0,003$	$0,0012 \pm 0,0005$	
3,0	2,9	-//-	$0,097\pm0,005$	$0,0016\pm0,0004$	
4,0	3,6	-//-	$0,063\pm0,004$	$0,013\pm0,003$	
5,0	4,6	-//-	$0,036\pm0,003$	$0,029\pm0,002$	
6,0	5,5	-//-	$0,076\pm0,006$	$0,042\pm0,003$	
6,8	5,8	-//-	$0,059\pm0,004$	$0,040\pm0,002$	
8,0	5,9	-//-	$0,067\pm0,003$	$0,043\pm0,004$	

В ВОДНЫХ РАСТВОРАХ ПРИ РАЗНЫХ РН

Примечание. Приведены результаты определения содержания пророксана и 3 ФП после инкубации в течение суток при температуре 37°C в пробах с теоретической концентрацией пророксана 0,1 г/мл (0,27 М).

нее, в дополнение к плохой растворимости пророксана как органического основания при нейтральных и щелочных рH, указывает на необходимость разработки для данной Φ С перорального ЛП в виде таблетки, обеспечивающей полное высвобождение и всасывание данной Φ С в желудке.

Использование в составе таблеток только низковязкой и быстронабухающей ГПМЦ К 100 LV(состав МП 1) сопровождается пролонгированным, равномерным высвобождением пророксана в буфере с рН 1.2 (см. рис. 1. a) более 7-8 ч, что является слишком длительным для полного высвобождения его из таблетки в желудке. Уменьшение доли матрицеобразователя и введение нерастворимой, но набухающей с образованием геля, КМЦ в качестве наполнителя (состав МП 2) значимо повышает скорость первоначального высвобождения пророксана из таблеток (см. рис. 1, а). Наблюдаемое затем постепенное уменьшение скорости высвобождения до более низких значений, чем у состава МП 1, свидетельствует о синергичном увеличении вязкости сформировавшегося гидрогеля, состоящего из КМЦ и ГПМЦ, и замедлении скорости перехода ФС в водную фазу [7]. Добавление нерастворимой, набухающей и не формирующей гель МКЦ (состав МП 3), напротив, приводит к выраженному ускорению высвобождения ФС,что, по-видимому, отражает интенсификацию эрозии матрицы. Включение в состав таблеток водорастворимых наполнителей — маннитола и сахарозы (составы МП 4 и МП 5) увеличивает интенсивность начального высвобождения и сокращает время полного высвобождения ΦC (см. рис. 1, δ).

Поскольку для пролонгированного ЛП, ориентированного на полное высвобождение и всасывание Φ С в желудке (менее 7-8 ч), профиль высвобождения Φ С из таблеток состава МП 3 наиболее близок к линейному по сравнению с составами МП 2, МП 4 и МП 5, то данный состав является наиболее перспективным, в том числе для получения таблеток с гастроретентивными свойствами. Привлекательность состава МП 3 для таких разработок подтверждается (см. рис. 1, θ) отсутствием влияния на профиль высвобождения пророксана добавления в этот состав газообразующих агентов — натрия гидрокарбоната и лимонной кислоты (состав МП 6) в количестве, обеспечивающем устойчивое всплывание и плавучесть таблеток (время плавания — более 3 ч).

Использование прямого прессования для изготовления таблеток состава типа МП 6 невозможно для масштабирования из-за низкой, практически нулевой, сыпучести ФС пророксана гидрохлорида и содержащих ее таблетируемых смесей. Согласно данным электронной и световой микроскопий (см. рис. 2), порошок субстанции образует мелкие частицы размером 6,4-8,4 мкм (p=0,95), представляющие собой агломераты кристаллов палочковидной формы раз-

мером около 1 мкм. Этим объясняется не только низкая сыпучесть, но и высокая уплотняемость порошка (насыпная плотность до уплотнения -0.371 ± 0.008 г/см³, после уплотнения -0.501 ± 0.010 г/см³). Таким образом, необходима предварительная грануляция ФС пророксана гидрохлорида при производстве таблеток с пролонгированным высвобождением.

ЗАКЛЮЧЕНИЕ

Использование в таблетках матрицеобразователя ГПМЦ и набухающего, но не формирующего гель, наполнителя МКЦ обеспечивает пролонгацию высвобождения, ориентированную на максимальное высвобождение ФС пророксана гидрохлорида в желудке. При разработке технологии получения таких таблеток не может применяться прямое прессование, в связи с этим целесообразно обоснование способа грануляции данной ФС, учитывающего особенности влияния процесса грануляции как на ФС, так и на вспомогательные вещества, используемые для придания таблетке гастроретентивных свойств.

Работа выполнена при финансовой поддержке Минобрнауки РФ (договор № 02.G25.31.0001) в рамках реализации Постановления Правительства РФ №218 от 09.04.2010 г. с привлечением Центра коллективного пользования уникальным научным оборудованием в области нанотехнологий МФТИ.

AUTEPATYPA/REFERENCES

- **1.** Виничук С.М., Турчина Н.С., Виничук И.С. Применение α -адреноблокатора пирроксана при лечении вегетативных кризов у больных с мягкой формой артериальной гипертензии. Семейная медицина, 2005; 2: 86–9. (Vinichuk S.M., Turchina N.S., Vinichuk I.S. Alpha-adrenoblocker proroxan treatment of mild hypertension patients' vegetative crises. Semejnaja medicina, 2005; 2: 86–9 (in Russian)).
- **2**. Воробьев С.П., Громов С.А., Старых Н.Т. Лечение пирроксаном больных диэнцефальной эпилепсией. Журнал невропатологии и психиатрии, 1973;11: 1732–5. (Vorob'ev S.P., Gromov S.A., Staryh N.T. Pyrroxan therapy of patients with diencephalic epilepsy. Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova., 1973; 11:1732–1735. (in Russian)).
- 3. Бурыкина Г.Н. Новый отечественный препарат пирроксан в терапии больных аллергическими дерматозами. Вестник дерматологии и венерологии, 1974; 12: 63–6. (Burykina G.N. New Soviet preparation of pyrroxan in the treatment of patients with allergic dermatoses. Vestn.Dermatol.Venerol., 1974; 12: 63–6 (in Russian)).
- **4.** Крылова С.А., Крылов С.С., Петров А.Н. Распределение адреноблокирующего препарата пирроксана в организме белых крыс. Бюллетень экспериментальной биологической медицины, 1976; 12: 1453–5. (Krylova S.A., Krylov S.S., Petrov A.N. Distribution of the adrenoblocking drug pyrroxan in the bodies of white rats. Biull. Eksp. Biol. Med., 1976; 12: 1453–5 (in Russian)).
- **5.** Maderuelo C., Zarzuelo A., Lanao J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release. 2011 Aug. 25; 154 (1): 2–19.
- **6.** Алексеев К.В., Блынская Е.В., Карбушева Е.Ю., Седова М.К., Тихонова Н.В., Уваров Н.А. Получение плавающих лекарственных форм. Фармация, 2012; 6: 35–8. (Alekseev K.V., Blynskaja E.V., Karbusheva E.Ju., Sedova M.K., Tihonova N.V., Uvarov N.A. Preparation of floating dosage forms. Farmatsiya, 2012; 6: 35–38. (in Russian)).
- **7.** Timmins P., Pygall S.R., Melia C.D. Hydrophilic Matrix Tablets for Oral Controlled Release, New York: Springer; 2014; 326.

Поступила 19 сентября 2016 г.

EXTENDED-RELEASE PROROXANE TABLETS: DESIGN OF COMPOSITION AND INVESTIGATION OF DRUG RELEASE

G.O. Nifontova^{1,2}; S.P. Krechetov¹, MD; O.V. Dolotova¹, PhD; E.V. Korostylev³; A.R. Akhmetzyanova⁴; Professor I.I. Krasnyuk², PhD

¹Center of Living Systems, Moscow Institute of Physics and Technology; 9, Institutsky Lane, Build. 7, Dolgoprudnyi, Moscow Region 141700, Russian Federation

²I.M. Sechenov First Moscow State Medical University; 8, Trubetskaya St., Build. 2, Moscow 119991, Russian Federation ³Center for Collective Use, Moscow Institute of Physics and Technology; 9, Institutsky Lane, Dolgoprudnyi, Moscow Region 141700, Russian Federation

⁴Farmzashchita (Pharmprotection) Research-and-Production Center, Federal Bio-medical Agency of Russia; 11, Vashutinskoe Shosse, Khimki, Moscow Region 141402, Russian Federation

SUMMARY

Introduction. The short-term effect and high dosages of the oral non-selective α -adrenoceptor proroxane indicate that it is appropriate to design the drug as ex-tended-release tablets that can be retained in the stomach.

Objective: to provide evidence for the composition and technology of extended-release proroxane tablets based on hydrophilic matrices.

Material and methods. The solubility of proroxane was investigated by the shake-flask method to determine its amount in the samples using high performance liquid chromatography. The size and morphology of proroxane powder particles were ex-amined using optical and electron microscopy. Hydrophilic hydroxypropyl methyl-cellulose (HPMC) matrix tablets were prepared by direct compression. The disso-lution test results were used to evaluate proroxane release from the tablets.

Results. The use of hydrophilic HPMC matrix allows for providing the required indicators of the extended release of proroxane from the tablets. The specific fea-tures of the substance of proroxane do not enable one to obtain tableting mixtures with the optimum flowability and they require pre-aranulation of the substance.

Conclusion. The release prolongation focused on the maximum release of prorox-ane hydrochloride in the stomach provides HPMC matrix and the filler microcrys-talline cellulose. When choosing a method of granulation, one should take into ac-count the specific features of both the substance and excipients.

Key words: proroxane, solubility, pH, extended release, hydrophilic matrices.

LGC Standards это:

- Свыше 100.000 химических и физико-химических стандартных образцов в постояннном предложении
- Более 40 лет опыта в дистрибуции стандартных образцов

Мы являемся частью компании LGC, которая выполняет, в том числе, роль Государственного метрологического института Великобритании в области химических и биохимических измерений. В нашем предложении находятся:

- Стандартные образцы для Европейской, Американской и Британской фармакопей
- Стандартные образцы лекарственных веществ и их примесей, производимые LGC под брендом Микромоль
- Стандартные образцы для анализа продуктов питания
- Стандартные образцы для анализа элементов окружающей среды
- Стандартные образцы для клинических анализов
- Стандартные образцы стероидов, наркотических веществ, веществ растительного происхождения
- Стандартные образцы для анализа промышленных продуктов... и многие другие

LGC – это организатор программ проверки компетентности, аккредитованный согласно норме ISO 17034:2010

Ваших вопросов ждем по адресам:

В России: В Польше (контакт на русском и английском языках):

LGC Standards Sp. z o.o. LGC Standards Sp. z o.o.

представительство ul. M. Konopnickiej 1, Dziekanów Leśny,

Гороховая улица, д. 47, офис 405
190031 Санкт-Петербург, Россия
Тел.: +48 22 751 31 40
Факс: +48 22 751 58 45
E-mail: ru@lgcstandards.com

WWW: www.lgcstandards.com WWW: www.lgcstandards.com, www.lgcpt.com

LGC Quality - ISO Guide 34 • GMP/GLP • ISO 9001 • ISO/IEC 17025 • ISO/IEC 17043

