N.P. Sachivkina(1), E.M. Lenchenko(2), R.T. Mannapova(3), А.А. Strizhakov(1), E.V. Romanova(1), D.M. Lukina(1) 1-Peoples’ Friendship University of Russia, 6, Miklukho-Maklai St., Moscow 117189, Russian Federation;2-Moscow State University of Food Production, 11, Volokolamskoe Sh., Moscow 125080, Russian Federation;3-K.A.Timiryazev Russian Agrarian University, 49, Timiryazevskaya St., Moscow 127550, Russian Federation

Mycoses are often associated with biofilms that are microbial communities encapsulated in a polysaccharide-rich extracellular matrix. Species of yeast-like fungi belonging to the genus Candida are the most common pathogens that cause superficial, deep, and systemic mycoses. Microorganisms that make up the biofilm have recently demonstrated decreased susceptibility to most therapeutic drugs, which contributes to the long-term persistence of infection. At the moment, there is a new branch of preventive and therapeutic medicine, which needs pharmaceuticals to be designed to prevent the formation of biofilms or the destruction of the already formed ones. Recent technological advances have contributed to the elaboration of new approaches to investigating the formation of biofilms and their models and to accumulating extensive knowledge about the influence of different variables on biofilm formation, morphology, and architectonics. There is information on current methods for modeling Candida biofilms and on their advantages or disadvantages in their structure and mechanisms.

Candida spp.

  1. Marrie T., Costerton J. Scanning and transmission elec-tron microscopy of in situ bacterial colonization of intrave-nous and intraarterial catheters. J.Clin.Microbiol., 1984; 19: 87–693.
  2. Tchekmedyian N., Newman K., Moody M., Costerton J. Special studies of the Hickman catheter of a patient with recur-rent bacteremia and candidemia. Am. J. Med. Sci., 1986; 291: 419–24.
  3. Reid G., Denstedt J., Kang Y. Microbial adhesion and bio-film formation on ureteral stents in vitro and in vivo. J. Urol., 1992; 148: 1592–4.
  4. Elder M., Matheson M. Biofilm formation in infectious crystalline keratopathy due to Candida albicans. Cornea. 1996; 15: 301–4.
  5. Chandra J., Mukherjee P., Leidich S., Faddoul F. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J. Dent. Res., 2001; 80: 903–8.
  6. Almshawit H., Macreadie I., Grando D. A simple and inex-pensive device for biofilm analysis. J.Microbiol.Methods., 2014; 98: 59–63.
  7. Hawser S., Douglas L. Biofilm formation by Candida spe-cies on the surface of catheter materials in vitro. Infect. Immun. 1994; 62: 915–21.
  8. Ramage G., Vande W., Wickes B., Lopez-Ribot J. Biofilm formation by Candida dubliniensis. J. Clin. Microbiol. 2001; 39: 3234–40.
  9. Chandra J., Mukherjee P., Ghannoum M. In vitro growth and analysis of Candida biofilms. Nat. Protoc. 2008; 3: 1909–24.
  10. Harrison J., Ceri H., Yerly J., Rabiei M., Hu Y., Martinuzzi R., Turner R. Metal ions may suppress or enhance cellular differ-entiation in Candida albicans and Candida tropicalis biofilms. Appl. Environ.Microbiol. 2007; 272: 172–81.
  11. Srinivasan A., Uppuluri P. Development of a high-throughput Candida albicans biofilm chip. PLoS One. 2011; 6:e19036.
  12. Andes D., Nett J., OschelR. Development and characteri-zation of an in vivo central venous catheter Candida albicans bio-film model. Infect. Immun., 2004; 72: 6023–31.
  13. Vila T., Ishida K., Seabra S., Rozental S. Miltefosine inhib-its Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells. Int. J. Antimicrob. Agents. 2016; 48 (5): 512–20.
  14. Kucharíková S., Tournu H., Holtappels M. In vivo efficacy of anidulafungin against mature Candida albicans biofilms in a novel rat model of catheter-associated Candidiasis. Antimicrob. Agents Chemother. 2010; 54 (10): 4474–5.
  15. Andes D.R., Nett J., Oschel P., Albrecht R., Marchillo K., Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun. 2004; 72: 6023–31.
  16. Schinabeck M.K., Long L.A., Hossain M.A., Chandra J., Mukherjee P.K., Mohamed S., Ghannoum M.A. Rabbit model of Candida albicans biofilm infection: liposomal Amphotericin B antifungal lock therapy. Antimicrob. Agents Chemother. 2004; 48: 1727–32.
  17. Bertolini M.M., Xu H., Sobue T., Nobile C.J., Del BelCury A.A. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth con-ditions and hyphalmorphotypes. Mol. Oral Microbiol. 2015; 30 (4): 307–22. Epub 2015 Apr 20.
  18. Harriott M.M., Lilly E.A., Rodriguez T.E., Fidel P.L.Jr, Noverr M.C. Candida albicans forms biofilms on the vaginal mucosa. Microbiology. 2010; 156: 3635–44.
  19. Sachivkina N.P., Kravtsov E.G., Wasileva E.A., Anokchina I.V., Dalin M.V. Efficiency of lyticase (bacterial enzyme) in experi-mental candidal vaginitis in mice. Bulletin of Experimental Biology and Medicine. 2010; 149 (6): 727–30.
  20. Zhilkina V.Ju., Sachivkina N.P., Marahova A.I. i dr. Izuchenie antimikrobnoj i antimikoticheskoj aktivnosti vitaminnyh sborov i preparatov na ih osnove. Sovremennye problemy nauki i obrazovanija, 2017; 5: 124. [Zhilkina V.Yu., Sachivkina N.P., Marakhova A.I. et al. The study of the antimicro-bial and antimycotic activity of vitamin fees and preparations based on them. Sovremennye problemy nauki i obrazovaniya, 2017; 5: 124 (in Russian)].
  21. Sachivkina N.P., Kravtsov E.G., Vasil'eva E.A. Izuchenie fermenta litikazy kak novogo antimikoticheskogo preparata. Vestnik Rossijskogo universiteta druzhby narodov. Serija: Agronomija i zhivotnovodstvo. 2008; 3: 37–43. [Sachivkina N.P., Kravtsov E.G., Vasil’yeva E.A. The study of the enzyme liticase as a new antimycotic drug. Vestnik Rossiyskogo Universiteta Druzhby Narodov. Seriya: Agronomiya i zhivotnovodstvo. 2008; 3: 37–43 (in Russian)].