THE SAFETY ASSESSMENT OF RIFABUTIN NANOFORMULATIONS

DOI: https://doi.org/10.29296/25419218-2018-05-09
Issue: 
5
Year: 
2018

O.I. Avdeeva(1), M.N. Makarova(1), O.O. Maksimenko(2), N.S. Osipova(2), V.Yu. Balabaniyan(3), S.E. Gelperina(2) 1-Pharmacy House Research-and-Production Association; 245, Kuzmolovsky Urban-Type Settlement, Vsevolozhsky District, Leningrad Region 188663, Russian Federation; 2-OOO “Tekhnologiya Lekarstv (Drug Technology), 2a, Rabochaya St., Build. 31, Room 21, Khimki, Moscow Region 141400, Russian Federation; 3-M.V. Lomonosov Moscow State University, 1, Leninskie Gory, Moscow 119991, Russian Federation

Introduction. One of the ways to reduce the toxicity of antibiotics is to deliver the latter primarily to infected organs and tissues, which can be achieved by different drug delivery systems. Of particular interest are polymer nanoparticles that combine the properties of importance for carriers, such as stability and high capacity for a wide range of drugs. Objective: to determine the toxic, maximum tolerated, and lethal doses of rifabutin nanoformulations. Material and methods. Water-compatible injectable formulations were obtained by incorporation of rifabutin in polylactide nanoparticles (Rb-PLGA) or by its solubilization with human serum albumin (Rb-HSA). Experiments were carried out on male and female sexually mature outbred rats and mice, which were kept under standard vivarium conditions. Results. The rifabutin nanoformulations Rb-HSA and Rb-PLGA are suitable for the intravenous injection of colloidal nanosuspensions wherein the concentration of rifabutin is about 5 mg/ml, which is 25 times more than the solubility of the substance. According to the level of acute toxicity, rifabutin nanoformulations can be assigned to GOST 12.1.007-76, Class 3 (moderately toxic substances) and to Class 4 (lowly toxic substances) as classified by K.K. Sidorov. The major target organs of toxicity for drugs are the central nervous system, liver, and lung. After intravenous injection of high-dose Rb-PLGA in rats there was an increase in locomotor activity, which may be associated with a pseudoallergic reaction to the administration of a colloidal formulation. Conclusion. The application of a nanotechnological approach could obtain suitable intravenous nanoformulations of the insoluble antibiotic rifabutin. The results of a comprehensive study of acute toxicity parameters refer rifabutin nanoformulations to as moderately toxic substances (Class 3 according to GOST 12.1.007-76).

Keywords: 
rifabutin
nanoformulations
toxicity
rats
mice

References: 
  1. Cybanev A.A., Sokolova G.B. Protivotuberkuleznyy antibiotik prolongirovannogo deystviya rifabutin. Antimikrobnyy spektr, osobennosti farmakodinamiki i farmakokinetiki. Antibiotiki i himioterapiya. 1999; 8: 30–6.
  2. Blaschke TF, Skinner MH. The clinical pharmacokinetics of rifabutin. Clin Infect Dis. 1996 Apr;22 Suppl 1: 15–22.
  3. Tuberkulez i VICh-infekciya: taktika vedeniya pacientov s sochetannoy infekciey. Klinicheskiy protokol dlya Evropeyskogo regiona VOZ. E`lektronnyy resurs: http://www.euro.who.int/__data/assets/pdf_file/0003/78132/Chap_4_TB_4_web_rus.pdf.
  4. Rifabutin. Tuberculosis, 2008, 88(2) 145–7.
  5. Direktiva 2010/63/EU Evropeyskogo Parlamenta i Soveta Evropeyskogo Soyuza po ohrane zhivotnyh, ispol`zuemyh v nauchnyh celyah. SPb., 2012; 48.
  6. MSDS i LD50 rifabutin. [E`lektronnyy resurs]. Rezhim dostupa: http://www.pfizer.com/files/products/material_safety_data/RIFABUTIN%20CAPSULES
  7. Makarenko I.E., Avdeeva O.I., Vanatiev G.V. i dr. Vozmozhnye puti i ob``emy vvedeniya lekarstvennyh sredstv laboratornym zhivotnym. Mezhdunarodnyy vestnik veterinarii, 2013; 3: 78–84.
  8. Rukovodstvo po provedeniyu doklinicheskih issledovaniy lekarstvennyh sredstv. Chast` pervaya. M.: Grif i K; 2012.
  9. Berezovskaya I.V. Klassifikaciya himicheskih veshhestv po parametram ostroy toksichnosti pri parenteral`nyh sposobah vvedeniya. Himiko-farmacevticheskiy zhurnal, 2003; 37 (3): 32–4.
  10. Izmerov N.F., Sanockiy I.V., Sidorov K.K. Parametry toksikometrii promyshlennyh yadov pri odnokratnom vozdeystvii. Spravochnik. M.: Medicina, 1977; 240.
  11. Brughera M, Scampini G, Newman AJ, Castellino S, Sammartini U, Mazué G. Overview of toxicological data on rifabutin. Exp Toxicol Pathol. 1995; 47 (1):1–9.
  12. Fiziologicheskie, biohimicheskie i biometricheskie pokazateli normy e`ksperimental`nyh zhivotnyh. Ppod red. V.G. Makarova, M.N. Makarovoy. Spravochnik. SPb.: LEMA, 2013; 116.
  13. Ring J, Laubenthal H, Messmer K. Incidence and classification of adverse reactions to plasma substitutes. Klin Wochenschr. 1982; 60 (17): 997–1002.
  14. Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR, Muggia FM. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol. 2003; 14 (9): 1430–7.
  15. M. B. Passani, P. Panula, J.-Sh. Lin. Histamine in the brain. Front Syst Neurosci. 2014; 8: 64.
  16. MYCOBUTIN* (rifabutin capsules USP), PRODUCT MONOGRAPH, Pfizer Canada Inc., 2015. https://www.pfizer.ca/sites/g/files/g10037206/f/201710/MYCOBUTIN_PM_E.pdf
  17. J. Li and C. Sabliov. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol Rev 2013; 2 (3): 241–57.