USE OF CURRENTLY AVAILABLE BASE-FORMING SUBSTANCES IN THE TECHNOLOGY OF SOFT FORMULATIONS: THE PRESENT STATUS AND PROMISES

DOI: https://doi.org/None
Issue: 
6
Year: 
2015

M.A. Dzhavakhyan, PhD; A.V. Davydova; S.P. Komkova; O.A. Semkina, PhD All-Russian Research Institute of Medicinal and Aromatic Plants; 7, Grin St., Building 1, Moscow 117216

The rationally chosen base in soft formulations optimizes a drug manufacturing process, sets up parameters for active ingredient release, imparts drug stability, and on its own carries properties, such as softening, exudative, reparative, and others, etc., which are necessary for an end product. A range of currently available bases for the manufacture of soft formulations is considered. The most popular gelling agents, such as polymer hydrogels - carbomers, poloxamers, cellulose esters, and liposomal hydrogel, are characterized.

Keywords: 
soft formulation
excipients
gel

References: 
  1. Tabata Y. Biomaterial technology for tissue engineering applications. Journal of The Royal Society Interface. 2009; 6 (3): 311–324.
  2. Saroha K., Singh S., Aggarwal A., Nanda S. Transdermal gels-An alternative vehicle for drug delivery. International Journal Pharmaceutical Chemistry and Biological Science, 2013; 3 (3): 495–503.
  3. Kopecek J., Yang J. Review, Hydrogels as smart biomaterials. Polymer International, 2007; 56: 1078–1098.
  4. Kopecek J. Hydrogels: From soft contact lenses and implants to selfassemblednanomaterials. Journal of Polymer Science, 2009; 47: 5929–5946.
  5. Shahin M., Hady S.A., Hammad M. Optimized formulation for topical administration of clotrimazole using Pemulen polymeric emulsifier. Drug development and industrial pharmacy, 2011; 37 (5): 559–568.
  6. Islam M.T., Rodriguez-Hornedo N., Ciotti S. and Ackermann C. Rheological characterization of topical Carbomer gels neutralized to different pH. Pharmaceutical Research, 2004; 21: 1192–1199.
  7. Sarkhejiya N.A. & Baldaniya L.H. Hydrogels: A Versatile Drug Delivery Carrier Systems. Int. journal of Phr.Sci. and Nanotechnology, 2012; 5 (3): 1745–1757.
  8. Fresno Contreras M.J., Ramirez Dieguez A., Jimenez Soriano M.M. Rheological characterization of hydroalcoholic gels-15% ethanol-of CarbopolRUltrezTM 10. Farmaco, 2001; 56: 437–441.
  9. Liu W., Hu M., Liu W., Xue C., Xu H., Yang X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. International Journal of Pharmaceutics, 2008; 364: 135–141.
  10. Reisch M. S. Message in a bottle. Chemical & engineering news, 2006; 84 (19): 15–20.
  11. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Advanced Drug Delivery Reviews, 2004; 56: 675–711.
  12. Honeywell-Nguyen P.L. Bouwstra J.A. Vesicles as a tool for transdermal and dermal delivery. Drug Discovery Today: Technologies, 2005; 2: 67–74.
  13. Fang J.Y. Nano- or submicron-sized liposomes as carriers for drug delivery. Chang Gung Medical Journal, 2006; 29: 358–62.
  14. Leeuw J.D., de Vijlder H.C., Bjerring P., Neuman H. Liposomes in dermatology today. Journal of European Academy of Dermatology and Venerology, 2009; 23: 505–516.
  15. Dragicevic-Curic N., Winter S., Stupar M., Milic J., Krajisnik D., Gitter B., Fahr A. Temoporfin-loaded liposomal gels: Viscoelastic properties and in vitro skin penetration. International Journal of Pharmaceutics, 2009; 373: 77–84.
  16. Thirumaleshwar S., Kulkarni P.K., Gowda D.V. Liposomal Hydrogels: A novel drug delivery system for wound dressing. Current Drug Therapy, 2012; 7: 212–218.
  17. Shailesh T., Kulkarni P. K. Development and Evaluation of Mupirocin Loaded Liposomal Hydrogels for Diabetic Wound Healing Properties. Indian Journal of Advances in Chemical Science, 2014; 2: 42–45.
  18. Mourtas S., Haikou M., Theodoropoulou M., Tsakiroglou C. Antimisiaris S.G. The effect of added liposomes on the rheological properties of a hydrogel: A systemic study. Journal of Colloid and Interface Science, 2008; 317: 611–619.
  19. Pavelic Z., Skalko-Basnet N., Filipovic-Grcic J., Martinac A., Jalsenjak I. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. Journal of Controlled Release, 2005; 106: 34–43.
  20. Beukelman C.J., Van den Berg A.J.J., Hoekstra M.J., Uhi R., Reimer K., Mueller S. Anti-inflammatory properties of a liposomal hydrogel with povidoneiodine (RepithelR) for wound healing in vitro. Journal of Burns, 2008; 34: 845–855.
  21. Mourtas S., Fotopoulou S., Duraj S., Sfika V., Tsakiroglou C., Antimisiaris, S.G. Liposomal drugs dispersed in hydrogels: effect of liposome, drug and gel properties on drug release kinetics. Colloids and Surfaces B: Biointerfaces, 2007; 55 (2): 212–221.
  22. Patel H.R., Patel R.P., Patel M.M. Poloxamers: A pharmaceutical excipients with therapeutic behaviors. Int. J. Pharmtech. Res., 2009; 1 (2): 299–303.
  23. Dumortier G., Grossiord J.L., Agnely F., Chaumeil J.C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharmaceutical research, 2006; 23 (12): 2709–2728.
  24. Shin S., Cho C., Oh I. Enhanced efficacy by percutaneous absorption of piroxicam from the poloxamer gel in rats. Int. J. Pharm., 2002; 193 (2): 213–218.