MEDICINAL PLANTS AS A SOURCE OF PROMISING PHARMACEUTICAL SUBSTANCES FOR THE CORRECTION OF CARBOHYDRATE METABOLIC DISORDERS

DOI: https://doi.org/10.29296/25419218-2018-07-02
Issue: 
7
Year: 
2018

S.V. Okovityi, S.M. Napalkova, M.N. Povydysh, V.G. Luzhanin, M.Yu. Goncharov, G.P. Yakovlev Saint Petersburg State Chemopharmaceutical University, 14, Prof. Popov St., Saint Petersburg 197376, Russia

Isolation of individual biologically active substances and their purified complexes from plant raw materials followed by determination of their safety and specific activity is one of the promising approaches to designing new tools to prevent and treat diseases associated with carbohydrate metabolic disorders, diabetes in particular. Current studies pay special attention to identification of the mechanisms of action of individual compounds of plant origin. The main mechanisms of action are inhibition of a number of enzymes; direct and indirect effects on glucose uptake and transport; increased β-cell proliferation and insulin secretion; and antioxidant action. There are data on medicinal plants and their components having experimental activity at different stages of pathology development and on the proven mechanisms of their action. Extracts from the plants belonging to different families, which contain groups of substances, such as flavans, chalcones, catechins, alkaloids, sesquiterpene lactones, and triterpenoids, are shown to affect carbohydrate metabolic disturbances.

Keywords: 
carbohydrate metabolism
medicinal plants
biologically active substances

References: 
  1. Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabet for 2010 and 2030. Diabetes Res Clin Pract., 2010; 87(1): 4–14.
  2. Algoritmy specializirovannoy medicinskoy pomoshhi bol`nym saharnym diabetom. Pod red. I.I. Dedova. M.: UP PRINT, 2017; 112. [Algorithms of specialized medical care for patients with diabetes mellitus (by ed. I.I. Dedov). Moscow: UP PRINT, 2017; 112 (in Russian)].
  3. Dedov I.I., Shestakova M.V., Galstyan G.R. Rasprostranennost` saharnogo diabeta 2 tipa u vzroslogo naseleniya Rossii (issledovanie NATION). Saharnyy diabet, 2016; 19 (2): 104–12. [Dedov I.I., Shestakova M.V., Galstjan G.R. The prevalence of type 2 diabetes in the adult population of Russia (NATION study). Saharnyj diabet, 2016; 19 (2): 104–12 (in Russian)].
  4. Ehrenkranz J.R., Lewis N.G., Kahn C.R., Roth J. Phlorizin: a review. Diabetes Metab. Res. Rev., 2005; 21, (1): 31–8.
  5. Isaji M. Sodium-glucose cotransporter inhibitors for diabetes. Curr. Opin. Investig. Drugs., 2007; 8 (4): 285–92.
  6. Picot C.M., Subratty A.H., Mahomoodally M.F. Inhibitory potential of five traditionally used native antidiabetic medicinal plants on α-amylase, α-glucosidase, glucose entrapment, and amylolysis kinetics in vitro. Adv. Pharmacol. Sci., 2014; 739–834.
  7. Melzig M.F., Funke I. Pflanzliche Alpha-Amylasehemmer – eine Möglichkeit zur Phytotherapie bei Diabetes Mellitus Typ II? Wien Med. Wochenschr., 2007; 157: 320–24.
  8. Rahimzadeh M., Jahanshahi S., Moein S., Moein M.R. Evaluation of alphaamylase inhibition by Urtica dioica and Juglans regia extracts. Iran. J. Basic. Med. Sci., 2014; 17: 465–9.
  9. Li Y., Chen Y., Xiao C., Chen D., Xiao Y., Mei Z. Rapid screening and identification of α-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci., 2014; 960: 166–73.
  10. Governa P., Baini G., Borgonetti V. et al. Phytotherapy in the management of diabetes: a review. Molecules., 2018; 23 (1): pii: E105.
  11. Akshatha V.J., Nalini M.S., DaSouza C., Prakash H.S. Streptomycete endophytes from anti-diabetic medicinal plants of theWestern Ghats inhibit α-amylase and promote glucose uptake. Lett Appl Microbiol., 2014; 58: 433–9.
  12. Ramírez G., Zavala M., Pérez J., Zamilpa A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evidence-Based Complementary and Alternative Medicine, 2012.
  13. El-Abhar H.S., Schaalan M.F. Phytotherapy in diabetes: Review on potential mechanistic perspectives.World. J. Diabetes., 2014; 5: 176–97.
  14. Bahmani M., Shirzad H., Mirhosseini M. et al. A review on ethnobotanical and therapeutic uses of Fenugreek (Trigonella foenum-graceum L.). J. Evid.-Based. Complement. Altern. Med., 2016; 21(1): 53–62.
  15. Wilcox G. Review article insulin and insulin resistance. Clin. Biochem. Rev., 2005; 26: 19–39.
  16. Sangeetha M.K., Priya C.D., Vasanthi H.R. Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes. Phytomedicine., 2013; 20: 246–8.
  17. Kadan S., Saad B., Sasson Y., Zaid H. In vitro evaluations of cytotoxicity of eight antidiabetic medicinal plants and their effect on GLUT4 Translocation. Evid. Based. Complement. Alternat. Med., 2013; 2013: 549345.
  18. Wang L., Waltenberger B., Pferschy-Wenzig E.M. et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPAR-γ): a review. Biochem. Pharmacol., 2014; 92: 73–89.
  19. Katz S.R., Newman R.A., Lansky E.P. Punica granatum: heuristic treatment for diabetes mellitus. J. Med. Food., 2007; 10: 213–7.
  20. Liv X.F., Meng Q.Y., Guo X.M. Effect of Rehmannia glutinosa water extraction on insulin resistance and gene expression of resistin in type 2 diabetes mellitus rats. Zhongguo Zhong Yao Za Zhi. 2007; 32: 2182–4.
  21. Seo J.B., Choe S.S., Jeong H.W. et al. Anti-obesity effects of Lysimachia foenum-graecum characterized by decreased adipogenesis and regulated lipid metabolism. Exp. Mol. Med., 2011; 43: 205–15.
  22. Kim Y.J., Choi M.S., Park Y.B. et al. Garcinia cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World. J. Gastroenterol., 2013; 19: 4689–701.
  23. Ilavenil S., Arasu M.V., Lee J.C. et al. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine., 2014; 21: 758–65.
  24. Kim H.S., Sung H.Y., Kim M.S. et al. Oleanolic acid suppresses resistin induction in adipocytes by modulating Tyk-STAT signaling. Nutr. Res., 2013; 33: 144–53.
  25. Mauricio D. Inhibidores SGLT‑2: de la corteza del manzano y la glucosuria familiar al tratamiento de la diabetes mellitus tipo 2. Med. Clin. (Barc.)., 2013; 141 (Suppl. 2): 31–5.
  26. Makarova E., Górnaś P., Konrade I. et al. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: a preliminary study. J. Sci. Food. Agric., 2015; 95: 560–8.
  27. Ríos J.L., Francini F., Schinella G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med., 2015; 81 (12-13): 975–94.
  28. Yabe D., Seino Y. Two incretin hormones GLP‑1 and GIP: comparison of their actions in insulin secretion and β-cell preservation. Prog. Biophys. Mol. Biol., 2011; 107: 248–56.
  29. Cernea S., Raz I. Therapy in the early stage: incretins. Diabetes Care, 2011; 34 (Suppl. 2): 264–71.
  30. Wang P., Alvarez-Perez J.C., Felsenfeld D.P. et al. A highthroughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat. Med., 2015; 21: 383–8.
  31. Combs A.P. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J. Med. Chem., 2010; 53: 2333–44.
  32. Uddin M.N., Sharma G., Yang J.L. et al. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica. Phytochemistry, 2014; 103: 99–106.
  33. Pitschmann A., Zehl M., Atanasov A.G., Dirsch V.M., Heiss E., Glasl S. Walnut leaf extract inhibits PTP1B and enhances glucose-uptake in vitro. J. Ethnopharmacol., 2014; 152: 599–602
  34. Giacco F., Brownlee M. Oxidative stress and diabetic complications. Circ. Res., 2010; 107: 1058–70.
  35. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr. Rev., 2012; 70: 257–65.
  36. Oliveira J.S., Silva A.A.N., Silva Junior V.A. Phytotherapy in reducing glycemic index and testicular oxidative stress resulting from induced diabetes: a review. Braz. J. Biol., 2017; 77 (1): 68–78