Methods for determining mercury in biological objects

DOI: https://doi.org/10.29296/25419218-2020-03-01
Issue: 
3
Year: 
2020

N.O. Kim, E.A. Ivanovskaya Novosibirsk Medical State University; 52, Krasnyi Prospect, Novosibirsk 63001, Russian Federation

To ensure the quality of a pharmaceutical substance and ready-made drugs during development and optimization processes and a process change, it is necessary to carefully control one of its most important indices – impurities. Mercury is a heavy metal that can enter the body with seafood and hydrobionts, so the substances derived from marine biocenosis products may contain mercury as an impurity. It is important not only to carry out a qualitative analysis, but also to find an effective quantitative analysis of mercury-containing drugs at all stages of a production process. The aim of this investigation was to review the literature on methods for determining mercury in biological objects. The paper presents data on existing up-to-date methods to determine mercury, as one of the toxic elements that can accumulate and is contained in organic substances, as well as in pharmaceutical production sources, including those based on protamine. The review of the literature has shown that pharmacopoeial (dithizone extraction/photocolorimetry), spectrophotometric (including flameless or cold vapor atomic absorption spectrometry), chromatographic (mainly high performance liquid chromatography) and electrochemical (including voltammetric analysis) techniques are used to measure mercury as an impurity in the sources of pharmaceutical production.

Keywords: 
mercury
determination methods
spectrometry
chromatography
voltamperometry
protamine

References: 
  1. Ivanenko N.B., Solov'ev N.D., Ivanenko A.A., Moskvin L.N. Opredelenie himicheskih form mikroelementov v biologicheskih ob'ektah. Analitika i kontrol'. 2012; 16 (2): 12–5. [Ivanenko N.B., Soloviev N.D., Ivanenko A.A., Moskvin L.N. Determination of chemical forms of microelements in biological objects. Analytics and control. 2012; 16 (2): 12–5 (in Russian)].
  2. Osnovy analiticheskoj himii. Pod red. Ju.A. Zolotova. 5-e izd., ster. M.: Akademija, 2012; 2: 409. [Fundamentals of analytical chemistry Red. Yu.A. Zolotov. 5th ed., Sr. M.: Academy, 2012; 2: 409 (in Russian)].
  3. Barrocas P.R.G., Landing W.M., Hudson R.J.M. Assessment of mercury (II) bioavailability using a bioluminescent bacterial biosensor: Practical and theoretical challenges. J. Environ. Sci. 2010; 22: 1137–43.
  4. Woop M. Optimizing Tethered Particle Motion to Measure DNA Compaction by Protamine. Biophysical J. 2015; 108: 393a.
  5. Shuvaeva O.V., Gustaytis M.A., Anoshin G.N. Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection. Anal. Chim. Acta. 2008; 621: 148–54.
  6. Dedkova V.P., Shvoeva O.P., Savvin S.B. Test-metod opredelenija rtuti (ІІ) ditizonom na tverdoj faze voloknistogo anionoobmennika. Zhurn. analit. himii. 2004; 59 (4): 429–33. [Dedkova V.P., Shvoeva O.P., Savvin S.B. Test method for determination of mercury (II) by dithizone on the solid phase of a fibrous anion exchanger. Zhurn. analyte chemistry. 2004; 59 (4): 429–33 (in Russian)].
  7. Spirova S.N. Issledovanie soderzhanija primesnyh elementov (kadmij, svinets, rtut') v lekarstvennyh sredstvah i syr'e prirodnogo proishozhdenija: avtoreferat dis. ... kandidata farmatsevticheskih nauk: 15.00.02. M., 1995; 24. [Spirova S.N. Investigation of the content of impurity elements (cadmium, lead, mercury) in medicines and raw materials of natural origin: abstract of thesis. ... Candidate of Pharmaceutical Sciences: 15.00.02. M., 1995; 24 (in Russian)].
  8. Castillo A., Roig-Navarro A.F., Pozo O.J. Method optimization for the determination of four mercury species by micro-liquid chromatography – inductively coupled plasma mass spectrometry coupling in environmental water samples. Anal. Chim. Acta. 2006; 577: 18–25.
  9. Bashilov A. Opredelenie tjazhelyh metallov v BADah, lekarstvennyh rastenijah, biologicheskih zhidkostjah metodami AAS, ISP-OES, ISP-MS posle mikrovolnovoj probopodgotovki. Himicheskij analiz i meditsina: sb. tez. I Vseros. konf. s mezhdunar. uchastiem (Moskva, 9–12 nojabrja 2015 g.). M.: KASKON, 2015; 6–12. [Bashilov A. Determination of heavy metals in dietary supplements, medicinal plants, biological fluids by AAS, ICP-OES, ICP-MS methods after microwave sample preparation. Chemical analysis and medicine: collection of articles. mes. I Vseros. conf. from Intern. participation (Moscow, November 9–12, 2015). M.: KASKON, 2015; 6–12 (in Russian)].
  10. Alemasova A.S., Rokun A.N., Shevchuk I.A. Analiticheskaja atomnoabsorbtsionnaja spektroskopija. Donetsk, 2003; 327. [Alemasova A.S., Rokun A.N., Shevchuk I.A. Analytical atomic absorption spectroscopy. Donetsk, 2003; 327 (in Russian)].
  11. Belokamenskaja A.M., Rebezov M.B., Mazaev A.N., Rebezov Ja.M., Maksimjuk N.N., Asenova B.K. Issledovanie pischevyh produktov i prodovol'stvennogo syr'ja na soderzhanie rtuti atomno-absorbtsionnym metodom. Molodoj uchenyj. 2013; 10: 98–101. URL https://moluch.ru/archive/57/7967/ (data obraschenija: 24.12.2018). [Belokamenskaya A.M., Rebezov M.B., Mazaev A.N., Rebezov Ya.M., Maksimyuk N.N., Asenova B.K. Study of food products and food raw materials for mercury content by the atomic absorption method. Young Scientist. 2013; 10: 98–101. URL https://moluch.ru/archive/57/7967/ (appeal date: 12/24/2018) (in Russian)].
  12. Atomno-absorbtsionnoe opredelenie rtuti v ob'ektah okruzhajuschej sredy i biologicheskih materialah: Sbornik metodicheskih ukazanij. M.: Federal'nyj tsentr gossanepidnadzora Minzdrava Rossii, 2004; 59. [Atomic absorption determination of mercury in environmental objects and biological materials: Collection of guidelines. M.: Federal center of state sanitary and epidemiological supervision of the Ministry of Health of Russia, 2004; 59 (in Russian)].
  13. Elzinga E.J., Cirmo A. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). J. Hazard. Mater. 2010; 183: 145–54.
  14. Pesavento M., Alberti G., Biesuz R. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: A review. Anal. Chim. Acta. 2009; 631: 129–41.
  15. Makarenko N.P., Ganebnyh E.V. Probopodgotovka biologicheskogo materiala dlja atomno-absorbtsionnogo analiza. Gigiena i sanitarija. 2007; 3: 71–2. [Makarenko N.P., Ganebnykh E.V. Sample preparation of biological material for atomic absorption analysis. Hygiene and Sanitation. 2007; 3: 71–2 (in Russian)].
  16. Zheng J., Shibata Y., Furuta N. Determination of selenoamino acids using two-dimensional ionpair reversed phase chromatography with on-line detection by inductively coupled plasma mass spectrometry. Talanta. 2003; 59: 27–36.
  17. Santos J.S. et al. Determination of organic and inorganic mercury species in water and sediment samples by HPLC on-line coupled with ICP-MS. Talanta. 2009; 80: 207–11.
  18. Vidler D.S. et al. The determination of methylmercury in biological samples by HPLC coupled to ICP-MS detection. Appl. Organometal. Chem. 2007; 21: 303–10.
  19. Kuzubova L.I., Shuvaeva O.V., Anoshin G.N. Metilrtut' v okruzhajuschej srede (rasprostranenie, obrazovanie v prirode, metody opredelenija). Novosibirsk: GPNTB SO RAN, 2000; 82. [Kuzubova L.I., Shuvaeva O.V., Anoshin G.N. Methyl mercury in the environment (distribution, education in nature, methods of determination). Novosibirsk: GPNTB SB RAS, 2000; 82 (in Russian)].
  20. Gevorgjan A.M., Kunitsyna Ju.A., Pak E.V., Artykov A.T. Opredelenie rtuti i vismuta v vodah inversionnoj vol'tamperometriej. 17 Mendeleevskij s'ezd po obsch. i prikl. himii, Kazan', 21–26 sent. 2003. T. 1. Plenar. dokl. Dostizh. i perspekt. him. nauki: Tez. dokl. Kazan', 2003; 222. [Gevorgyan A.M., Kunitsyna Yu.A., Pak E.V., Artykov A.T. Determination of mercury and bismuth in waters by inversion voltammetry. 17 Mendeleev Congress on total. and applied Chemistry, Kazan, 21–26 Sep. 2003. T. 1. Plenar. report Achieve and perspective. chemical Science: Tez. Report. Kazan, 2003; 222 (in Russian)].
  21. Miroshnikova E.G., Malahova N.A., Brajnina H.Z., Legon'kov V.V., Maksimov Ju.G., Volkonskij A.E. Sistemy dlja vnelaboratornogo inversionno-vol'tamperometricheskogo analiza. Vseross. nauchn. konf. s mezhdunarodnym uchastiem «Elektroanalitika-2005», Ekaterinburg, 23–27 maja 2005: Tez. dokl. Ekaterinburg, 2005; 105. [Miroshnikova EG, Malakhov NA, Brainin Kh.Z., Legonkov VV, Maksimov Yu.G., Volkonsky A.E. Systems for off-laboratory inversion-voltammetric analysis. Vseoss. scientific conf. with international participation «Electroanalytics-2005», Ekaterinburg, May 23–27, 2005: Proc. Report. Ekaterinburg, 2005; 105 (in Russian)].
  22. Matvejko N.P., Brajkova A.M., Bushilo K.A., Sadovskij V.V. Inversionno-vol'tamperometricheskij kontrol' soderzhanija tjazhelyh metallov v lekarstvennom rastitel'nom syr'e i preparatah na ego osnove. Vestnik vitebskogo gosudarstvennogo tehnologicheskogo universiteta. 2016; 1 (30): 82–5 [Matveyko N.P., Braykova A.M., Bushilo K.A., Sadovsky V.V. Inversion-voltammetric control of the content of heavy metals in medicinal plant materials and preparations based on it. Bulletin of the Vitebsk State Technological University. 2016; 1 (30): 82–5 (in Russian)].
  23. Slepchenko G.B., Martynjuk O.A., Postnikov P.S., Trusova M.E., Bondarev A.A., Smirnov I.V., Bystritskij E.L. Novye vozmozhnosti vol'tamperometricheskogo opredelenija farmatsevticheskih preparatov na organomodifitsirovannyh elektrodah. Sibirskij meditsinskij zhurnal №2`2009; 21–4. [Slepchenko G.B., Martynyuk O.A., Postnikov P.S., Trusova M.E., Bondarev A.A., Smirnov I.V., Bystritsky E.L. New features of voltammetric determination of pharmaceutical preparations on organomodified electrodes. Siberian medical journal № 2`200; 21–4 (in Russian)].
  24. Galimova V. Elektrohimicheskij kontrol' mikrokolichestv rtuti v vode. Vestnik L'vovskogo universiteta. Serija himicheskaja. 2016; 57 (2): 588–92 [Galimov V. Electrochemical control of trace amounts of mercury in water. Bulletin of Lviv University. Chemical series. 2016; 57 (2): 588–92 (in Russian)].