Ethanolamine derivatives as neuroprotective agents

DOI: https://doi.org/10.29296/25419218-2019-01-07
Issue: 
1
Year: 
2019

Yu.I. Sysoev, I.A. Titovich, S.V. Okovityi, B.Yu. Lalaev, V.Ts. Bolotova, A.N. Kimaev, E.V. Zagladkina Saint Petersburg State Chemopharmaceutical University, 14A, Prof. Popov St., Saint Petersburg 197376, Russian Federation

Introduction. Central nervous system (CNS) diseases lead to severe disorders that dramatically reduce the standard of living in patients and have a high social significance. This determines the relevance of a search for novel drugs for the pharmacological protection of the brain in various CNS injuries. Of great interest are ethanolamine derivatives, especially dimethylethanolamine (DMEA) salts and esters, which are actively used in neurological practice to treat various CNS diseases. Ethanolamine derivatives are able to facilitate the synthesis of acetylcholine and phosphatidylcholine in neuronal membranes, to stimulate cholinergic neurotransmission, and to improve the plasticity of neuronal membranes. This leads to the increases in the ability to concentrate, memorize, and reproduce the information received; to the optimization of cognitive and behavioral reactions; and to the reductions in neurological deficit and emotional instability. This review considers ethanolamine derivatives and salts used in clinical practice, their pharmacological characteristics, and possible side effects. Objective: to systematize and update the existing information about ethanolamine derivatives and salts as promising neuroprotective agents. Conclusion. Ethanolamine derivatives as neuroprotective agents develop their effects gradually when administered for weeks or even months. As compared with the available neuroprotective and nootropic agents, ethanolamine derivatives demonstrate no less efficiency, in this case showing a high safety profile. These compounds may be used to treat CNS diseases characterized by degenerative, traumatic or vascular lesions, conditions accompanied by hypoxia and/or decreased physical performance, as well as cognitive impairment.

Keywords: 
dimethylethanolamine
neuroprotection
citicoline
choline alfoscerate

References: 
  1. Amcheslavskij V.G. Primenenie tsitikolina (tserakson) pri lechenii posledstvij travmy mozga. Terapija, 2016; 2: 76–81. [Amtsheslavsky V.G. The use of citicoline (ceraxon) in the treatment of the consequences of brain injury. Terapiya, 2016; 2: 76–81 (in Russian)].
  2. Kapoor V.K., Dureja J., Chadha R. Synthetic drugs with anti-ageing effects. Drug discovery today, 2009; 14 (17): 899–904. DOI: 10.1016/j.drudis.2009.07.006
  3. Haubrich D.R., Wang P.F., Clody D.E., Wedeking P.W. Increase in rat brain acetylcholine induced by choline or deanol. Life sciences, 1975; 17(6): 975–80.
  4. Weiner W.J., Kanapa D.J., Klawans H.L. The effect of dimethylaminoethanol (DEANOL) on amphetamine-induced stereotyped behavior (AISB). Life sciences, 1976; 19 (9): 1371–6.
  5. Davis K.L., Hollister L.E., Barchas J.D., Berger P.A. Choline in tardive dyskinesia and Huntington's disease. Life sciences, 1976; 19 (10): 1507–15.
  6. Freeman J.J., Jenden D.J. The source of choline for acetylcholine synthesis in brain. Life Sciences, 1976; 19 (7): 949–62.
  7. Cornford E.M., Braun L.D. Oldendorf W.H. Carrier mediated blood-brain barrier transport of choline and certain choline analogs. Journal of neurochemistry, 1978; 30 (2): 299–308.
  8. Pomeroy A.R., Raper C. Cholinomimetic activity of dimethylamino-ethanol, and propanol and related compounds. European journal of pharmacology, 1972; 17 (1): 81–6.
  9. Jope R.S., Jenden D.J. Dimethylaminoethanol (deanol) metabolism in rat brain and its effect on acetylcholine synthesis. Journal of Pharmacology and Experimental Therapeutics, 1979; 211 (3): 472–9.
  10. Giuli C., Bertoni-Freddari C., Pieri C. Morphometric studies on synapses of the cerebellar glomerulus: the effect of centrophenoxine treatment in old rats. Mechanisms of ageing and development, 1980; 14 (1): 265–71.
  11. Malanga G., Aguiar M.B., Martinez H.D., Puntarulo S. New insights on dimethylaminoethanol (DMAE) features as a free radical scavenger. Drug Metab Lett, 2012; 6 (1): 54–9.
  12. Oettinger L. The use of Deanol in the treatment of disorders of behavior in children. The Journal of pediatrics, 1958; 53 (6): 671–5.
  13. Fisman M., Merskey H., Helmes E. Double-blind trial of 2-dimethylaminoethanol in Alzheimer's disease. The American journal of psychiatry, 1981; 138 (7): 970–2.
  14. Levin E.D., Rose J.E., Abood L. Effects of nicotinic dimethylaminoethyl esters on working memory performance of rats in the radial-arm maze. Pharmacology Biochemistry and Behavior, 1995; 51 (2): 369–73.
  15. Makarova L.M., Prihod'ko M.A., Pogorelyj V.E. Izuchenie protivogipoksicheskoj aktivnosti nooklerina. Kubanskij nauchnyj meditsinskij vestnik, 2006; 12: 71–73. [Makarova L.M., Prikhodko M.A., Pogorely V.E. Study of antihypoxic activity of noctolin. Kubanskiy nauchnyiy meditsinskiy vestnik, 2006; 12: 71–3 (in Russian)].
  16. Karen, E., Haneke M.S. Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts and Esters: Review of Toxicological Literature (Update). Report on National Institute of Environmental Health Sciences Contract No. N01-ES-65402, 2002. [Electronic resource]. National Toxicology Program, 2018. Access mode: https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/ dmct_508.pdf (circulation date: 15.06.2017).
  17. De Silva L. Biochemical mechanisms and management of choreiform movement disorders. Drugs, 1977; 14 (4): 300–10.
  18. Pieralisi G., Ripari P., Vecchiet L. Effects of a standardized ginseng extract combined with dimethylaminoethanolbitartrate, vitamins, minerals, and trace elements on physical performance during exercise. Clinical therapeutics, 1990; 13 (3): 373–82.
  19. Blin O., Audebert C., Pitelet S. et al. Effects of dimethylaminoethanol pyroglutamate (DMAE p-Glu) against memory deficits induced by scopolamine: evidence from preclinical and clinical studies. Psychopharmacology, 2009; 207 (2): 201–12. https://doi.org/10.1007/s00213-009-1648-7
  20. Martynov M.Y., Gusev E.I. Current knowledge of neuroprotective and neuroregenerative properties of citicoline in acute ischaemic stroke. J. Exp. Pharmacol., 2015; 7: 17–28. https://doi.org/10.2147/JEP.S63544
  21. Schabitz W.R., Weber J., Takano K., Sandage B.W. The effects of prolonged treatment with citicoline in temporary experimental focal ischemia. J. Neurol. Sci., 1996; 138 (1–2): 21–5.
  22. Bustamante A., Giralt D., Garcia-Bonilla L. Citicoline in pre-clinical animal models of stroke: a meta-analysis shows the optimal neuroprotective profile and the missing steps for jumping into a stroke clinical trial. Journal of neurochemistry, 2012; 123 (2): 217–25. https://doi.org/10.1111/j.1471-4159.2012.07891.x
  23. Dávalos A., Secades J. Citicoline preclinical and clinical update 2009–2010. Stroke, 2011; 42 (1): 36–39. https://doi.org/10.1161/STROKEAHA.110.605568
  24. Amenta F., Parnetti L., Gallai V., Wallin A. Treatment of cognitive dysfunction associated with Alzheimer's disease with cholinergic precursors. Ineffective treatments or inappropriate approaches. Mechanisms of ageing and development, 2001; 122 (16): 2025–40.
  25. Moreno M.D.J.M. Cognitive improvement in mild to moderate Alzheimer's dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clinical therapeutics, 2003; 25 (1): 178–93.
  26. Titovich I.A., Sysoev Ju.I., Bolotova V.Ts., Okovityj S.V. Nejrotropnaja aktivnost' novogo proizvodnogo aminoetanola v uslovijah eksperimental'noj ishemii golovnogo mozga. Eksperimental'naja i klinicheskaja farmakologija, 2017; 80 (5): 3–6. [Titovich I.A., Sysoev Y. I., Bolotova V.C., Okovityi S.V. Eksperimentalnaya i klinicheskaya farmakologiya, 2017; 80 (5): 3–6 (in Russian)]. https://doi.org/10.30906/0869-2092-2017-80-5-3-6
  27. Sysoev Ju.I., Okovityj S.V., Uzuegbunam B. Vlijanie novogo proizvodnogo dietilaminoetanola na vyrazhennost' nevrologicheskogo defitsita u krys posle cherepno-mozgovoj travmy. Biomeditsina, 2018; 2: 95–105. [Sysoev Yu.I., Okovityi S.V., Uzuegbunam B. The influence of new diethylaminoethanol compound on the neurological deficit in rats after traumatic brain injury. Biomeditsina, 2018; 2: 95–105 (in Russian)].
  28. Titovich I.A., Bolotova V.Ts. Eksperimental'noe izuchenie antigipoksicheskoj aktivnosti novogo proizvodnogo aminoetanola. Biomeditsina, 2016; 2: 77–83. [Titovich I.A., Bolotova V.C. Experimental study of antihypoxic activity of a new derivative aminoethanol. Biomeditsina, 2016; 2: 77–83 (in Russian)].
  29. Okovityj S.V., Rad'ko S.V. Vlijanie razlichnyh farmakologicheskih veschestv na vosstanovlenie fizicheskoj rabotosposobnosti posle nagruzok v eksperimente. Eksperimental'naja i klinicheskaja farmakologija, 2018; 81 (4): 28–32. [Okovityi S.V., Radko S.V. Influence of various pharmacological agents on physical work capacity restoration after training loads in experimental animals. Eksperimentalnaya i klinicheskaya farmakologiya, 2018; 81 (4): 28–32 (in Russian)]. https://doi.org/10.30906/0869-2092-2018-81-4-28-32
  30. Murphree H., Pfeiffer C., Backerman C. The stimulant effect of 2-dimethylaminoethanol (deanol) in humanvolunteer subjects. Clin. Pharmacol., 1960; 1: 303–10.
  31. Janowsky D.S., Davis J., El-Yousef M.K. A cholinergic-adrenergic hypothesis of mania and depression. The Lancet, 1972; 300 (7778): 632–5.
  32. Safer D.J., Allen R.P. The central effects of scopolamine in man. Biological psychiatry, 1971; 3 (4): 347–55.
  33. Maas J.W. Biogenic amines and depression: Biochemical and pharmacological separation of two types of depression. Archives of General Psychiatry, 1975; 32 (11): 1357–61.
  34. Casey D.E. Mood alterations during deanol therapy.Psychopharmacology, 1979; 62 (2): 187–91.