G.A. Badun(1), M.G. Chernysheva(1), Yu.G. Kazaishvili(2), B.A. Rudoy(2) 1-M.V. Lomonosov Moscow State University, 1, Leninskie Gory, Build. 3, GSP-1, Moscow 119991, Russian Federation 2-OOO «NIARMEDIK PLUS», 12, Aircraft Designer Mikoyan St., Moscow 125252, Russian Federation

Introduction. Standard analytical approaches to the quantitative determination of polymeric substances, including natural polysaccharides, in biological matrices are not suitable. If it is necessary to quantify the test substance in their native state in biological fluids, an approach is frequently applied with the fluorescent or radioactive label being incorporated into the active ingredient. Objective. To synthesize the tritium-labeled polymer component of Kagocel substance for pharmacokinetic studies, namely for the estimation of the parameters of absorption, distribution, and excretion. Material and methods. The investigation object is the pharmaceutical substance Kagocel. The tritium label was incorporated into the polymer component of the substance by tritium thermal activation method. The identity of the tritium-labeled substance of the starting material was confirmed by size-exclusion chromatography with refractometric detection and by high-performance liquid chromatography with spectrophotometric detection. Results. The tritium thermal activation method allows the label to be incorporated into the polymer component of the Kagocel substance with a specific activity of at least 300 mCi/g. Upon applying the elution profiles obtained with size-exclusion and reversed-phase chromatography of the substance Kagocel and the curves obtained by scintillation detectors, it is seen that the basic time of radioactivity release corresponds to that of the polymer component of the substance Kagocel. The tritium-labelled substance Kagocel is stable; the tritium exchange in the acidic medium is no more than 2%. Conclusion. The developed method for incorporating hydrogen isotopes provides a stable labeled preparation of the substance Kagocel with a high specific activity, which is suitable for further biological studies.

tritium thermal activation method

  1. Gor`kov V. A., Karamysheva E. I. Vvedenie v farmakokinetiku. Klinicheskaya farmakokinetika. 2004; 1: 2–4. [Gorkov V.A., Karamysheva E.I. Introduction to pharmacokinetics. Klinicheskaya farmakokinetika. 2004; 1: 2–4 (in Russian)].
  2. Reyhart D. V., Chistyakov V. V. Analiz lekarstvennyh sredstv pri farmakokineticheskih issledovaniyah. Kazanskiy medicinskiy zhurnal. 2010; 91: 4 [Reikhart D.V., Chistyakov V.V. Analysis of drugs in pharmacokinetic studies. Kazanskiy meditsinskiy zurnal. 2010; 91: (4) (in Russian)].
  3. Medvedev Yu. V., Ramenskaya G. V., Shohin I. E., Yarushok T. A. VE`ZhH i SVE`ZhH kak metody dlya opredeleniya lekarstvennyh veshhestv v krovi (obzor). Himiko-farmacevticheskiy zhurnal. 2013; 47 (4): 45–51 [Medvedev Y.V., Ramenskaya G.V., Shokhin I.E., Yarushok T.A. HPLC and UPLC for determining drugs in blood (a review). Himiko-farmacevticheskiy zurnal, 2013; 47 (4): 45–51. DOI: (in Russian)].
  4. Kagocel v pediatrii. K voprosu o reproduktivnoy bezopasnosti: Sbornik st. Pod red. chl.-korr. T.A. Gus`kovoy. M., 2018; 112. [Kagocel in pediatrics. On the issue of reproductive safety: (by ed. T.A. Guskova). Moscow, 2018; 112 (in Russian)].
  5. Sinicyn, A. P., Hotchenkov, V. P., Rudoy, B. A., Kazaishvili, Yu. G. Ocenka vozmozhnosti vysvobozhdeniya svobodnogo gossipola iz preparata «Kagocel» pod vozdeystviem imitatorov pishhevaritel`nyh sokov cheloveka. Farmaciya. 2017; 66 (5): 41–7. [Sinitsin A.P., Khotchenkov V.P., Rudoy B.A., Kazaishvili Yu.G. Release of free gossypol from Kagocel under the influence of human digestive juice simulants. Farmatsiya. 2017; 66 (5): 41–7 (in Russian)].
  6. Williams V. R. et al. Basic physical chemistry for the life sciences. – 1978. – №. 541.3 W5.
  7. Allen, P., Bragg, R. A., Caffrey, M., Ericsson, C., Hickey, M. J., Kingston, L. P., Elmore, C. S. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors. Journal of Labelled Compounds and Radiopharmaceuticals. 2017; 60 (2): 124–9.
  8. Lappin G., Temple S. Radiotracers in Drug Development. CRC Press Taylor & Francis Group, 2006; 320.
  9. Shevchenko V. P., Nagaev I. Y., Myasoedov N. F. The efficiency of solvent-free catalyst systems in the synthesis of tritiumlabelled biologically active compounds. Journal of Labelled Compounds and Radiopharmaceuticals. 2010; 53 (11–12): 693–703.
  10. Badun G. A., Chernysheva M. G., Ksenofontov A. L. Increase in the specific radioactivity of tritium-labeled compounds obtained by tritium thermal activation method //Radiochimica Acta International journal for chemical aspects of nuclear science and technology. – 2012. – T. 100. – №. 6. – S. 401-408.
  11. Badun G. A. et al. A new technique for tritium labeling of humic substances //Radiochimica Acta International journal for chemical aspects of nuclear science and technology. – 2010. – T. 98. – №. 3. – S. 161-166.
  12. Klein, O. I., Isakova, E. P., Deryabina, Y. I., Kulikova, N. A., Badun, G. A., Chernysheva, M. G., Koroleva, O. V. Humic Substances Enhance Growth and Respiration in the Basidiomycetes Trametes Maxima Under Carbon Limited Conditions. Journal of Chemical Ecology. 2014; 40 (6): 643–52. DOI:
  13. Kulikova, N. A., Abroskin, D. P., Badun, G. A., Chernysheva, M. G., Korobkov, V. I., Beer, A. S., Perminova, I. V. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid. Scientific Reports. 2016; 6. Article number: 28869 DOI: 10.1038/srep28869
  14. Boyd, B. J., Kaminskas, L. M., Karellas, P., Krippner, G., Lessene, R., Porter, C. J Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Molecular pharmaceutics. 2006; 3 (5): 614–27. DOI: 10.1021/mp060032e