SYNTEHESIS OF TRITIUM-LABELLED POLYMERIC KAGOCEL SUBSTANCE: SOLID-PHASE CATALYTIC HETEROGENEOUS ISOTOPE EXCHANGE METHOD

DOI: https://doi.org/10.29296/25419218-2018-08-03
Issue: 
8
Year: 
2018

G.V. Sidorov(1), Yu.G. Kazaishvili(2), B.A. Rudoy(2) 1-Institute of Molecular Genetics, Russian Academy of Sciences, 2, Acad. Kurchatov Sq., Moscow 123182, Russian Federation; 2-OOO «NEARMEDIC PHARMA», 12, Aircraft Designer Mikoyan St., Moscow 125252, Russian Federation

Introduction. Polymer compounds labeled with isotopes, tritium in particular, are indispensable for hetero-profile biochemical and diagnostic purposes, structural and functional studies, and investigations of the cellular metabolism of various biologically active compounds with the use of radioisotopes. The most efficient ways to incorporate hydrogen isotopes into natural compounds, especially into those of complex structure, are isotope exchange reactions. Isotope exchange with gaseous tritium is usually carried out in either liquid or solid media. The relatively high levels of tritium incorporated can be achieved if the solid-phase reaction with tritium is done. Objective: to investigate whether the solid-phase catalytic isotope exchange (SPCIE) technique can be used to incorporate a tritium label into the polymer component of the Kagocel substance. Material and methods. The relevance of the obtained labeled Kagocel substance was controlled by exclusion and reversed-phase high-performance liquid chromatography. The investigators assessed the stability of the prototypes of a polymer fraction of the Kagocel substance during prolonged storage and the impact of pH changes on the stability of the label incorporated into the polymer fragment. Results. A procedure was developed to incorporate tritium as a label into the polymer component of the Kagocel substance, by applying the SPCIE technique, which could prepare a labeled substance with a radiochemical purity of more than 98% and a specific activity sufficient to conduct various biological studies. The tritium-labelled polymer Kagocel substance was stable in 2% ethyl alcohol for 7 days at 10°C, and when incubated for 12 hours in a 0.01 M HCl solution (pH 2.0). Conclusion. The investigation has shown that the SPCIE technique is suitable for the incorporation of the tritium label into the polymer component of the Kagocel substance. The developed technique makes it possible to prepare tritium-labeled polymer Kagocel substance preparations having high specific activity and stability.

Keywords: 
kagocel
tritium
solid-phase catalytic isotope exchange with tritium

References: 
  1. Varfolomeev S.D., Gurevich K.G. Biokinetika. M.: Fair-press, 1999; 720. [Varfolomeev S. D., Gurevich K. G. Biokinetics: Practical Course //FAIR-PRESS: Moscow, Russia. – 1999. (In Russian)]
  2. Nekrasova Yu. N., Sadovnikov V. B., Zolotarev Yu. A.,. Navolockaya E. V. Svoystva i mehanizm deystviya sinteticheskogo peptida oktarfina. Bioorganicheskaya himiya. – 2010, 36 (5): 638–645 [Nekrasova, Y.N., Sadovnikov, V.B., Zolotarev, Y.A. et al. Properties and mechanism of the action of the synthetic peptide octarphin. Russ. J. Bioorganicheskaya himiya, 2010; 36: 589. https://doi.org/10.1134/S1068162010050067 (In Russian)]
  3. Tyurenkova I.N., Bagmetova V.V., Robertus A.I. A study of the GABAergic mechanisms of the neuropsychotropic action of neuroglutam //Neurochemical Journal. – 2015; 9: 116. https://doi.org/10.1134/S1819712415010134.
  4. Zimakova N.I., Kolesnikova E.Yu., Bud`ko A.P. i dr. Doklinicheskoe izuchenie farmakokinetiki lekarstvennoy formy analoga gipotalamicheskogo gormona somatostatina (AGG). Rossiyskiy bioterapevticheskiy zhurnal, 2012; 3: 33–38. [E`lektronnoe izdanie]. https://cyberleninka.ru/article/n/doklinicheskoe-izuchenie-farmakokinetiki-lekarstvennoy-formy-analoga-gipotalamicheskogo-gormona-somatostatina-agg (data obrashheniya: 14.09.2018). [Zimakova N.I., Kolesnikova E.Y., Budko A.P. et al. Preclinical study of the dosage form of analog drug form of analog hypothalamic hormone somatostatine (AGG). Rossiyskiy bioterapevticheskiy zhurnal, 2012; 3: 33–38. [Electronic resource].: https://cyberleninka.ru/article/n/doklinicheskoe-izuchenie-farmako- kinetiki-lekarstvennoy-formy-analoga-gipotalamicheskogo-gormona-somatostatina-AGG. (Sirculation date: 14.09.2018) (in Russian)].
  5. Pat. 2238122. Rossiyskaya Federaciya, MPK A61P 31/16; C08B 15/00. Protivoinfekcionnyy farmacevticheskiy preparat/ Gomes P.L., Ershov F.I., Mezenceva M.V. i dr.; zayavl. 20.01.2003 ; opubl. 20.10.2004.
  6. Jensen E.C. Use of fluorescent probes: their effect on cell biology and limitations. – The anatomical record, 2012; 295: 2031–2036.
  7. Kagocel v pediatrii. K voprosu o reproduktivnoy bezopasnosti: Sbornik st. Pod red. chl.-korr. T.A. Gus`kovoy. M., 2018; 112. [Kagocel in pediatrics. On the issue of reproductive safety: (by ed. T.A. Guskova). Moscow, 2018; 112 (in Russian)]
  8. Williams V.R., Mattice W.L., Williams H.B., 1978. Basic physical chemistry for the life sciences.
  9. Badun G.A., Chernysheva M.G., Kazaishvili Yu.G., Rudoy B.A., Sintez polimernoy substancii «Kagocel», mechennoy tritiem: metod termicheskoy aktivacii tritiya. Farmaciya, 2018; 67 (7) 14–20. Badun G.A., Chernisheva M.G., Kazaishvili Yu.G., Rudoy B.A. Synthesis of tritium-labelled polymeric kagocel substance: tritium thermal activation method. Farmatsiya 2018; 67 (7): 14–20. https://doi.org/10.29296/25419218-2018-07-03 (in Russian)
  10. Sidorov G.V., Badun G.A., Baitova E.A. i dr. Cravnitel`noe izuchenie reakciy termicheski aktivirovannogo tritiya i tverdofaznoy kataliticheskoy gidrogenizacii tritiem s saharami i diazinami. Radiohimiya 2005; 47: 284–8. [Sidorov G.V., Badun G.A., Baitova E.A. et al. A comparative study of the reactions of thermally activated tritium with sugars and diazines and of solid-phase catalytic hydrogenation of these compounds with tritium. Radiohimiya, 2005; 47: 311. https://doi.org/10.1007/s11137-005-0095-5. (in Russian)]
  11. G.V. Sidorov, N.F. Myasoedov. Sintez mechennyh tritiem biologicheski vazhnyh diazinov. Uspehi himii, 1999. – 68: 254. [Sidorov G.V., Myasoedov N.F. Synthesis of tritium-labelled biologically important diazines. Uspehi himii, 1999; 68 (3): 229. https://doi.org/10.1070/RC1999v068n03ABEH000471 (in Russian)]
  12. Shevchenko V.P., Nagaev I.Y., Shevchenko K.V. et al. Specific features of deuterium and tritium labeling of Pro-Gly-Pro-Leu and of physiologically active amino acids. Radiochemistry, 2013; 55: 346
  13. Sidorov G.V., Myasoedov N.F. Synthesis of tritium-labelled diazines and their analogues. J. Labelled. Compd. Radiopharm., 1998; 41 (11): 993–1003
  14. Baumgärtner F., Donhaerl W. Non-exchangeable organically bound tritium (OBT): its real nature //Analytical and Bioanalytical chemistry. – 2004. – T. 379. – №. 2. – S. 204–9.
  15. Baranov V. Izotopy: svoystva, poluchenie, primenenie. T.2. M.: Fizmatlit, 2005. – 728 s. [Baranov V. Isotopes: properties, obtaining, application. T.2. Moscow: 2017. (in Russian)]
  16. Shevchenko V.P., Nagaev I.Y., Myasoedov N.F. Tritium labeling of bioorganic compounds by isotope exchange. Radiochemistry, 2012; 54 (1): 79–86. https://doi.org/10.1134/S1066362212010122
  17. Shevchenko V.P., Razzhivina I.A., Chernysheva M.G. et al. Efficiency of isotope exchange between sodium 4-phenylbenzoate and activated tritium Radiochemistry, 2015; 57 (3): 312–320. https://doi.org/10.1134/S1066362215030121