Features of the body distribution of pyridostigmine bromide in warm-blooded animals following its intragastric administration

DOI: https://doi.org/10.29296/25419218-2020-02-09
Issue: 
2
Year: 
2020

V.K. Shormanov(1), M.I. Alyokhina(2), E.A. Kovalenko(1),, D.V. Astafyev(1), 1-Kursk State Medical University, 3, Karl Marx St., Kursk 305004, Russian Federation 2-N.N. Burdenko Voronezh State Medical University, 10, Studencheskaya St., Voronezh 394036, Russian Federation

Introduction. Pyridostigmine bromide is an anticholinesterase drug used to treat myasthenia gravis and as an antidote for organophosphate poisoning. This substance is toxic to warm-blooded animals and can cause poisoning in humans or death. Objective: to study of the body distribution of pyridostigmine bromide in warm-blooded animals (rats) after intragastric administration of a triple LD50 of this substance. Material and methods. Pyridostigmine bromide was the object of the investigation. The latter used analytical methods, such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and UV spectrophotometry. Male Wistar rats were intragastrically injected with a triple LD50 of pyridostigmine bromide as an aqueous suspension. The compound analyzed was isolated with acetone from the tissues of the organs and blood of dead animals, purified by replacing the solvent and by subsequent TLC using a model of the grafted stationary phase C14-C15 and the mobile phase buffer solution (pH 1.98)/ acetone = 8/2 (v/v). Results. Pyridostigmine bromide in biological objects was identified by the value of absolute chromatographic mobility (TLC), retention time in a sorbent column (HPLC), and absorption characteristics in the UV region of the spectrum. The content of pyridostigmine in the biological objects was estimated by UV spectrophotometry. The developed methods for determining the analyte in the biological objects were validated by linearity, selectivity, accuracy, precision, detection limits, and quantitative indicators. Conclusion. Pyridostigmine (μg/g of biomaterial) was found to be predominantly present in the spleen (340.8±18.51), gastric wall (240.6±21.79), gastric contents (209.8±13.35), and heart (191.2±15.49) of experimental animals.

Keywords: 
pyridostigmine bromide (Kalimin)
body distribution
chemical and toxicological study
validation

References: 
  1. Pyridostigmine Bromide. PubChem. [Electronic resource]. Access mode: https://pubchem.ncbi.nlm.nih.gov/compound/pyridostigmine_bromide#section=Top. [circulation date February 1, 2019].
  2. European Pharmacopoeia Pyridostigmine bromide. 2013; 8(2): 3132–33.
  3. Pyridostigmine bromide. ChemIDplus. [Electronic resource]. Access mode: https://chem.nlm.nih.gov/chemidplus/rn/101-26-8. [circulation date February 1, 2019].
  4. Bigoniya P., Singh A.K., Bigoniya D., Gopalan N. Pyridostigmine Bromide and Potassium Iodate: Subacute Oral Toxicity and Stability. Journal of Drug Metabolism and Toxicology, 2013; 4: 145. DOI: 10.4172/2157-7609.1000145
  5. Agafonov B.V., Kotov S.V., Sidorova O.P. Miastenija i vrozhdennye miastenicheskie sindromy. M.: Meditsinskoe informatsionnoe agentstvo; 2013. [Agaphonov B.V., Kotov S.V., Sidorova O. P. Myasthenia and congenital myasthenic syndromes. Moscow: Medical Information Agency; 2013 (in Russian)].
  6. Merkulova D.M., Nikitin S.S., Merkulov Ju.A. Algoritmy diagnostiki i lechenija krizovyh sostojanij u bol'nyh miasteniej gravis. Atmosfera. Nervnye bolezni, 2008; 2: 7–12. [Merculova D.M., Nikitin S.S., Merculov U.A. Algorithms for diagnosis and treatment of crisis conditions in patients with myasthenia gravis. Athmosphere. Nervnye bolezni, 2008; 2: 7–12 (in Russian)].
  7. Shormanov V.K., Duritsyn E.P., Iljushina T.N., Alehina M.I. Izuchenie spektral'nyh harakteristik, sposobnosti k okisleniju i hromatograficheskoj podvizhnosti v tonkih slojah obraschenno-faznogo sorbenta produkta metabolizma kalimina 60 N. Kurskij nauchno-prakticheskij vestnik «Chelovek i ego zdorov'e», 2012; (2): 133–7. [Shormanov V.K, Duritsyin E.P, Ilyushina T.N, Alekhina M.I. Studing the spectral charachteristics, the ability to oxidation and chromatographic mobility of metabolism product Kalimin 60 N by reversed thin-layer chromatography. Kurskiy nauchno-prakticheskiy vestnik «Chelovek i ego zdorov'e», 2012; (2): 133–7 (in Russian)].
  8. Alehina M.I., Nikitina T.N., Shormanov V.K. Ekstraktsionno-fotometricheskoe opredelenie piridostigmina bromida v vide metabolita v model'nyh smesjah. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta, 2017; 3(63): 23–5. [Alekhina M.I, Nikitina T.N, Shormanov V.K. Extraction-photometric determination of pyridostigmine bromide in the form of a metabolite in model mixtures. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta, 2017; 3(63): 23–5 (in Russian)]. DOI: 10.19163/1994-9480-2017-3(63)-23-25
  9. Abu-Qare A.W., Abou-Donia M.B. High-Performance Liquid Chromatographic determination of pyridostigmine bromide, nicotine, and their metabolites in rat plasma and urine. Journal of chromatographic science, 2001; 39(7): 287–92. DOI: 10.1093/chromsci/39.7.287
  10. Zhao B., Moochhala S.M., Lu J., Tan D., Lai M.H. Determination of pyridostigmine bromide and its metabolites in biological samples. Journal of pharmacy and pharmaceutical sciences, 2006; 9 (1): 71–81.
  11. Chan K., Dehghan A. The isolation and determination of neostigmine, pyridostigmine and their metabolites in human biological fluids. Journal of Pharmacological Methods, 1978; 1(4): 311–20. DOI: 10.1016/0160-5402(78)90062-1
  12. Agarwal S., Gowda K.V., Mandal U., Ghosh D., Bose A., Sarkar A.K. Analysis of pyridostigmine bromide in human plasma and its application in bioequivalence studies. Journal of liquid chromatography and related technologies, 2007; 30: 2605–15. DOI:10.1080/10826070701540605
  13. Panahia Y., Yousefia G., Sahebkarb A., Foroutanc S.M., Zarghic A., Shafahatid A., Khoddame A., Saadatf A. Validation of a high-performance liquid chromatography method for the determination of pyridostigmine in plasma. Asian Biomedicine, 2013; 7(2): 275–9. DOI: 10.5372/1905-7415.0702.176
  14. Puram S.R., Batheja R., Nithya G. Highly sensitive and rapid evaluation of pyridostigmine impurity b in human plasma by liquid chromatography coupled with tandem mass spectrometer after administration of pyridostigmine to healthy volunteers in a pharmacokinetic study. Asian Journal of Pharmaceutical and Clinical Research, 2018; 11(6): 353–7. DOI: 10.22159/ajpcr.2018.v11i6.25038
  15. Guideline on validation of bioanalytical methods (draft). London: EMEA/CHMP/EWP; 2009