Определение генотоксичных примесей в фармацевтических субстанциях

DOI: https://doi.org/10.29296/25419218-2020-07-02
Номер журнала: 
7
Год издания: 
2020

О.В. Ананьина(1), М.Д. Хорольский(1, 2), Г.В. Раменская(1, 2), Е.А. Жуков(1), Н.В. Масленникова(1) (1)Научный центр экспертизы средств медицинского применения Минздрава России, Российская Федерация, 127051, Москва, Петровский бульвар, д. 8, стр. 2; (2)Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет), Российская Федерация, 119991, Москва, Трубецкая, д. 8 стр. 2

Рассмотрены подходы, применяемые к определению примесей, обладающих потенциальной генотоксичностью, в фармацевтических субстанциях. Данный вид примесей обладает способностью нарушать структуру ДНК независимо от концентрации, попавшей в организм, а также склонностью к кумуляции в тканях и органах. Ввиду участившихся случаев обнаружения генотоксичных примесей в фармацевтических субстанциях изучены литературные источники, описывающие их определение в различных матрицах. По итогу проведенного исследования генотоксичные примеси разделены нами на 2 группы, исходя из их происхождения. Для каждой группы определены наиболее часто используемые методы их идентификации. Сформулированы тенденции развития определения генотоксичных примесей как аспекта контроля качества.

Ключевые слова: 
генотоксичные примеси
чистота
N-нитрозопроизводные
Для цитирования: 
Ananyina O.V., Khorolsky M.D., Ramenskaya G.V., Zhukov E.A., Maslennikova N.V. Определение генотоксичных примесей в фармацевтических субстанциях . Фармация, 2020; 69 (7): 10-16https://doi.org/10.29296/25419218-2020-07-02

Список литературы: 
  1. Биглова Ю.Р., Гадасина Н.В., Боковикова Т.Н. и др. Неспецифические примеси в фармацевтических субстанциях: особенности методик их определения. Ведомости Научного центра экспертизы средств медицинского применения. 2019; 9 (3): 153–61. DOI: 10.30895/1991-2919-2019-9-3-153-161 [Biglova Y.R., Gadasina N.V., Bokovikova T.N. et al. Nonspecific Impurities in Pharmaceutical Substances: Characteristics of Test Methods. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2019; 9 (3): 153–61. DOI:10.30895/1991-2919-2019-9-3-153-161 (in Russian) ]
  2. M7(R1) Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals To Limit Potential Carcinogenic Risk. [Electronic resource]. Access mode: https://www.fda.gov/media/85885/download
  3. International council for harmonisation of technical requirements for pharmaceuticals for human use (ICH). Assessment and control of dna reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk M7(R1).
  4. ICH, Q1A (R2) Stability Testing of New Drug Substances and Products (Nov. 2003).
  5. Münster-Müller, S., Hansen, S., Opatz, T. et al. Chemical profiling of the synthetic cannabinoid MDMB-CHMICA: identification, assessment and stability study of synthesis-related impurities in seized and synthesized samples. Drug Testing and Analysis. 2019. DOI:10.1002/dta.2652
  6. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (ICH). Impurities in new drug products q3b(r2). [Electronic resource]. Access mode: https://database.ich.org/sites/default/files/Q3B_R2__Guideline.pdf
  7. Thybaud V., Aardema M., Clements J. et al. Strategy for genotoxicity testing: Hazard identification and risk assessment in relation to in vitro testing. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2007; 627 (1): 41–58.
  8. FDA, Drug recall. [Electronic resource]. Access mode: https://www.fda.gov/drugs/drug-safety-and-availability/drug-recalls
  9. Фармацевтический вестник. [Электронное издание]. Режим доступа: https://pharmvestnik.ru/content/news/hetero-drugs-otzyvaet-preparaty.html [Farmatsevticheskiy vestnik. [Electronic resource]. Access mode: https://pharmvestnik.ru/content/news/hetero-drugs-otzyvaet-preparaty.html (in Russian)]
  10. European Medicines Agency Evaluation of Medicines for Human Use (EMA). Guideline on the limits of genotoxic impurities.
  11. Gooty A. R., Katreddi H. R., Hunnur, R.K. et al. Simultaneous Determination of Genotoxic Impurities in Fudosteine Drugs by GC–MS. Journal of Chromatographic Science. 2016; 54 (8): 1277–81. DOI:10.1093/chromsci/bmw070
  12. Ho T.D., Yehl P.M., Chetwyn N.P. et al. Determination of trace level genotoxic impurities in small molecule drug substances using conventional headspace gas chromatography with contemporary ionic liquid diluents and electron capture detection. Journal of Chromatography A. 2014; 1361: 217–28. doi:10.1016/j.chroma.2014.07.099
  13. Harigaya K., Yamada H., Yaku K. et al. (2014). Development and Validation of a Sensitive GC-MS Method for the Determination of Alkylating Agent, 4-Chloro-1-butanol, in Active Pharmaceutical Ingredients. Chemical and Pharmaceutical Bulletin. 2014; 62 (4): 395–8. DOI:10.1248/cpb.c13-00916
  14. Reddy S.R., Reddy K.H., Kumar M.N. et al. A Validated GC-MS Method for the Determination of Genotoxic Impurities in Divalproex Sodium Drug Substance. J. of Chromatographic Science. 2018. DOI:10.1093/chromsci/bmy089
  15. Wu C.-H., Xu F., Chang X.-L. et al. Determination of 1-bromopropane in workplace air by GC-FID. Zhonghua Laodong Weisheng Zhiyebing Zazhi. 2013; 31: 467–9.
  16. Li Z., Wang H., Wang H., Ren X. Method for detection of n-propyl bromide in leather and textile by GC-MS. Faming Zhuanli Shenqing. 2014. CN103604899A Feb 26.
  17. Genotoxic and carcinogenic impurities in drug substances and products: recommended approaches. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Silver Spring, MD. USA, 2008.
  18. Guideline on the Limits of Genotoxic Impurities, Committee for Medicinal Products for Human Use (CHMP), European Medicines Agency (EMEA), London, 2006 (CPMP/SWP/5199/02, EMEA/CHMP/QWP/251344/2006)
  19. Zhang C., Huang L., Wu Z., et al. Determination of sulfonate ester genotoxic impurities in imatinib mesylate by gas chromatography with mass spectrometry. J. of Separation Science. 2016; 39 (18): 3558–63. DOI:10.1002/jssc.201600389
  20. Liu Z., Fan H., Zhou Y., et al. Development and validation of a sensitive method for alkyl sulfonate genotoxic impurities determination in drug substances using gas chromatography coupled to triple quadrupole mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2018. DOI:10.1016/j.jpba.2018.12.044
  21. Council of Europe. Enquiry: alkyl mesilate (methanesulphonate) impurities in mesilate salts. Pharmeuropa. 2000; 12: 27.
  22. Khan M., Jayasree K., Reddy K.V.S.R. K. & Dubey P. K. A validated CE method for determining dimethylsulfate a carcinogen and chloroacetyl chloride a potential genotoxin at trace levels in drug substances. Journal of Pharmaceutical and Biomedical Analysis. 2012; 58: 27–33. DOI:10.1016/j.jpba.2011.09.019
  23. USP 42–NF 37 (467) RESIDUALSOLVENTS. [Electronic resource]. Access mode: https://www.uspnf.com/
  24. European Pharmacopoeia (Ph. Eur.) 9th Edition. 2.4.24. Identification and control of residual solvents. [Electronic resource]. Access mode: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-9th-edition
  25. Государственная фармакопея Российской Федерации XIV издание. ОФС.1.1.0008.15. «Остаточные органические растворители.» [Электронное издание]. Режим доступа: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-9th-edition [The State Pharmacopoeia оf the Russian Federation, XIV-ed. OFS.1.1.0008.15. "Residual organic solvents." [Electronic resource]. Access mode: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-9th-edition (in Russian) ]
  26. International council for harmonisation of technical requirements for pharmaceuticals for human use (ICH). Impurities: guideline for residual solvents Q3C(R6). [Electronic resource]. Access mode: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-33.pdf
  27. Nowak T., Graffius G.C., Liu Y. et al. GC-FID method for high-throughput analysis of residual solvents in pharmaceutical drugs and intermediates. Green Chemistry. 2016; 18 (13): 3732–9. DOI:10.1039/c6gc01210h
  28. Huang Y., Lu H., Zhang F., & Min C. Identification, isolation, characterization and ultra-performance liquid chromatography quantification of potential genotoxic impurities in linagliptin. J. of Separation Science. 2018. DOI:10.1002/jssc.201800623
  29. Wolff F.C., Dillenburg T.L., Venzon Antunes M. Characterization of imatinib mesylate formulations distributed in South American countries: Determination of genotoxic impurities by UHPLC-MS/MS and dissolution profile. Biomedical Chromatography. 2018; 32 (7): e4222. DOI:10.1002/bmc.4222
  30. Čarapić M., Nikolic K., Marković B. et al. Ultra-performance liquid chromatography tandem mass-spectrometry (UHPLC-MS/MS) for the rapid, simultaneous analysis of ziprasidone and its impurities. Biomedical Chromatography. 2018; e4384. DOI:10.1002/bmc.4384
  31. Vijaya Bhaskar Reddy A., Venugopal N., Madhavi G. A selective and sensitive UPLC–MS/MS approach for trace level quantification of four potential genotoxic impurities in zolmitriptan drug substance. Journal of Pharmaceutical and Biomedical Analysis. 2013; 84: 84–9. DOI:10.1016/j.jpba.2013.05.047
  32. GC/MS Headspace Method for Detection of NDMA in Valsartan Drug Substance and Drug Products. [Electronic resource]. Access mode: https://www.fda.gov/media/115965/download
  33. Combined Direct Injection N-Nitrosodimethylamine (NDMA), N-Nitrosodiethylamine (NDEA), N-Nitrosoethylisopropylamine (NEIPA), N-Nitrosodiisopropylamine (NDIPA), and N-Nitrosodibutylamine (NDBA) Impurity Assay by GC-MS/MS. [Electronic resource]. Access mode: https://www.fda.gov/media/123409/download