Влияние различных диет на состав кишечной микробиоты человека
Номер журнала:
7
Год издания:
2021
Микроорганизмы кишечника составляют динамическую экосистему, которая оказывает значительное влияние на здоровье человека, модулируя риск развития некоторых хронических заболеваний, включая воспалительные заболевания кишечника, ожирение, сахарный диабет типа 2, сердечно-сосудистые заболевания и рак. Кишечная микробиота (КМ) характеризуется межиндивидуальной изменчивостью, которая обусловлена генетическими и средовыми факторами, ее состав уникален для каждого человека и имеет тенденцию оставаться относительно стабильным на протяжении всей жизни. Ключевую роль в модуляции состава КМ играют особенности питания индивида. Имеются существенные различия в составе КМ между лицами, придерживающимися преимущественно так называемой «западной» диеты с высоким содержанием жиров, и теми, кто предпочитает углеводную диету, богатую пищевым волокнами. Представлены данные о связи между питанием и КМ, о влиянии на состав КМ краткосрочных и долгосрочных изменений в рационе питания, а также отдельных видов диет. Анализируются метаболические эффекты изменений в составе КМ, индуцируемых диетой. Показано, что диета с высоким содержанием пищевых волокон благотворно влияет на состав КМ, стимулируя бактериальное разнообразие и способствуя позитивным изменениям функций организма. Диета с высоким содержанием жира и рафинированных углеводов, напротив, вызывает дисбиоз и стимулирует рост «воспалительной» микрофлоры, приводя к развитию хронической эндотоксемии и системного воспаления.
Ключевые слова:
кишечная микробиота
диета
компоненты пищи
липополисахариды
воспаление
Для цитирования:
Айтбаев К.А., Муркамилов И.Т., Фомин В.В., Муркамилова Ж.А., Кудайбергенова И.О., Юсупов Ф.А. Влияние различных диет на состав кишечной микробиоты человека
. Фармация, 2021; 70 (7): 5-10https://doi.org/10.29296/25419218-2021-07-01Список литературы:
- KushkevychI., Martínková K., Vítězová M. Et al. Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies. J. of Clinical Medicine. 2021; 10 (3): 462. DOI: 10.3390/jcm10030462
- Acharya C., Bajaj J.S. Chronic liver diseases and the microbiome – translating our knowledge of gut microbiota to management of chronic liver disease. Gastroenterology. 2021; 160 (2): 556–72. DOI:10.1053/j.gastro.2020.10.056
- Zhao Y., Jiang Q. Roles of the Polyphenol–Gut Microbiota Interaction in Alleviating Colitis and Preventing Colitis-Associated Colorectal Cancer. Advances in Nutrition. 2021; 12 (2): 546–65. DOI:10.1093/advances/nmaa104
- Guo Y., Luo S., Ye Y. et al. Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. The J. of Clinical Endocrinology & Metabolism. 2021; 106 (1): 64–79. DOI: 10.1210/clinem/dgaa644
- Bibbo S., Dore M.P., Pes G.M. et al. Is There a Role for Gut Microbiota in Type 1 Diabetes Pathogenesis? Ann Med. 2017; 49 (1): 11–22. DOI:10.1080/07853890.2016.1222449
- Prince B.T., Mandel M.J., Nadeau K. et al. Gut Microbiome and the Development of Food Allergy and Allergic Disease. Pediatr. Clin. North. Am. 2015; 62: 1479–92. DOI:10.1016/j.pcl.2015.07.007
- Delgado M.A., Fochesato A., Juncos L.I. et al. Gut Microbiota Biomarkers in Autism Spectrum Disorders. Psychiatry and Neuroscience Update. Springer. Cham. 2021; 613–22. DOI:10.1007/978-3-030-61721-9_43
- Wu G.D., Chen J., Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334: 105–8. DOI: 10.1126/science.1208344
- David L.A., Maurice C.F., Carmody R.N. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559–63. DOI:10.1038/nature12820
- Claesson M.J., Jeffery I.B., Conde S. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488: 178–84. DOI: 10.1038/nature11319
- Chan Y.K., Estaki M., Gibson D.L. Clinical consequences of diet-induced dysbiosis. Ann. Nutr. Metab. 2013; 63: 28–40. DOI: 10.1159/000354902
- Adler C.J., Dobney K., Weyrich L.S. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat. Genet. 2013; 45: 450–5. DOI:10.1038/ng.2536
- De Filippo C., Cavalieri D., Di Paola M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010; 107: 14691–6. DOI: org/10.1073/pnas.1005963107
- Grzeskowiak L., Collado M.C., Mangani C. et al. Distinct gut microbiota in southeastern African and northern European infants. Pediatr. Gastroenterol. Nutr. 2012; 54 (6): 812–6. DOI:10.1097/MPG.0b013e318249039c
- Yatsunenko T., Rey F.E., Manary M.J. et al. Human gut microbiome viewed across age and geography. Nature. 2012; 486: 222–7. DOI:10.1038/nature11053
- Liszt K., Zwielehner J., Handschur M. et al. Characterization of bacteria, clostridia and Bacteroides in faeces of vegetarians using qPCR and PCR-DGGE fingerprinting. Ann. Nutr. Metab. 2009; 54: 253–7. DOI: 10.1159/000229505
- Dewulf E.M., Cani P.D., Claus S.P. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013; 62: 1112–21. DOI: 10.1136/gutjnl-2012-303304
- Walton G.E., Lu C., Trogh I. et al. A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutr. J. 2012; 11: 36. DOI:10.1186/1475-2891-11-36
- Kankaanpaa P., Yang B., Kallio H. et al. Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Appl. Environ. Microbiol. 2004; 70: 129–36. DOI: 10.1128/AEM.70.1.129-136.2004
- Lopetusol R., Scaldaferri F., Bruno G. et al. The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. Eur. Rev. Med. Pharmacol. Sci. 2015; 19 (6): 1068–76. PMID: 25855934
- Huang E.Y., Devkota S., Moscoso D. et al. The role of diet in triggering human inflamma- tory disorders in the modern age. Microbes Infect. 2013; 15: 765–74. DOI: 10.1016/j.micinf.2013.07.004
- Пупыкина К.А., Басченко Н.Ж., Павлова Г.А. и др. Влияние растительного сбора на дисбактериоз кишечника. Фармация. 2007; 6: 37–9. [Pupykina K.A.,Baschenko N.Zh., Pavlova G.A. et al. Effects of herbal species on intestinal dysbacteriosis. Farmatsiya. 2007; 6: 37–9 (in Russian)].
- Айтбаев К.А., Муркамилов И.Т. Кишечная микробиота: роль в патогенезе артериальной гипертензии. Клиническая медицина. 2017; 2: 123–6. DOI: 10.18821/0023-2149-2017-95-2-123-126 [Aitbaev K.A., Murkamilov I.T. Intestinal microbiota: its role in pathogenesis of arterial hypertension. Klinicheskaya meditsina. 2017; 2: 123–6. DOI:10.18821/0023-2149-2017-95-2-123-126 (in Russian)].
- Lee C.Y. The Effect of High-Fat Diet-Induced Pathophysiological Changes in the Gut on Obesity: What Should be the Ideal Treatment? Clin. Transl. Gastroenterol. 2013; 4: e39. DOI:10.1038/ctg.2013.11
- Kim K.A., Gu W., Lee I.A. et al. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One. 2012; 7: e47713. DOI:10.1371/journal.pone.0047713
- Pendyala S., Walker J.M., Holt P.R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012; 142: 1100–1. DOI:10.1053/j.gastro.2012.01.034
- Duca F.A., Sakar Y., Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J. Nutr. Biochem. 2013; 24: 1663–77. DOI:10.1016/j.jnutbio.2013.05.005
- Cani P.D., Amar J., Iglesias M.A. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56: 1761–72. DOI:10.2337/db06-1491
- Brun P., Castagliuolo I., Di Leo V. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007; 292: 518–25. DOI: 10.1152/ajpgi.00024.2006